Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Волокна как наполнители высокопрочные

    Композиционные материалы (композиты)—состоят из полимерной основы, армированной наполнителем в виде высокопрочных волокон или нитевидных кристаллов. Армирующие волокна и кристаллы могут быть металлическими, полимерными, неорганическими (например, стеклянными, карбидными, нитридными, борными). Армирующие наполнители в значительной степени определяют механические, теплофизические и электрические свойства полимеров. Многие композиционные полимерные материалы по прочности не уступают металлам. Композиты 364 [c.364]


    В табл. 8.2 приведены данные о механических свойствах промышленных эпоксидных связующих, применяемых в СССР. Как видно из этой таблицы, их характеристики значительно ниже приведенных в табл. 8.1, что приводит к неполному использованию прочности волокна и необходимости снижения содержания наполнителя. В табл. 8.3 даны характеристики некоторых новых высокопрочных эпоксидных связующих, свойства которых уже в большей степени приближаются к свойст- [c.212]

    Малеиновая кислота является промышленным продуктом и используется при получении высокопрочных пластмасс— термостойких многослойных материалов, армированных стеклотканью, — стеклопластов, не уступающих по прочности нержавеющей стали и титановым сплавам. Подобные материалы, создание которых было вызвано требованиями космической техники, были сначала использованы при создании корпусов ракет и затем при изготовлении кузовов автомашин, корпусов судов, водопроводных и ирригационных труб, электротехнических и строительных деталей. Из них были получены специальные изолирующие ткани для защитных покрытий кабин космических кораблей, предохраняющие от перегрева в момент вхождения в атмосферу. Эти теплоизолирующие материалы — побочные продукты космической технологии — нашли позднее применение в строительстве в условиях тропиков и полюсов. Широко известны стеклопластики, в которых в качестве связующего стекловидного наполнителя (стеклянного волокна) используются полиэфирные полимеры, получаемые поликонденсацией (с. 283) малеиновой кислоты (или ее ангидрида) с многоатомными спиртами. Это послужило причиной разработки различных способов получения малеиновой кислоты, которые преимущественно сводятся к окислению различных органических соединений (2-бутена, бензола, нафталина, фурфурола)  [c.183]

    Свойства новолачного волокнита такие же, как и резольного. Если в качестве волокнистого наполнителя применяется длинноволокнистый хлопок, то получается высокопрочный волокнит. [c.237]

    Если в качестве волокнистого наполнителя применяется длинноволокнистый хлопок, то получается высокопрочный волокнит. [c.203]

    В табл. IV.8 приведены данные об изменении реализуемой прочности волокон из алюмоборосиликатного Е и магний-алюмосиликатного S-994 составов стекол с прямым высокопрочным замасливателем HTS в пластике на различных этапах, начиная от изготовления первичной нити или ровницы и до их применения в тонкостенных цилиндрических оболочках, полученных спиральной намоткой. Установлено, что для обоих видов волокон прочность их в пластике с наполнителем в виде первичной нити (204 элементарных волокна) или ровницы в 12 сложений на 20— 25% ниже прочности нетронутых волокон. Среднее значение прочности стеклянных волокон в цилиндре диаметром 75 мм ниже прочности нетронутых волокон примерно на 30%, при этом прочность волокон из стекла Е составляет 260 кгс/мм , что лишь немного ниже прочности волокон в ровнице (275 кгс/мм ). [c.142]


    Иногда прочность высокомодульных углеродных волокон оказывается недостаточной. В этих случаях предложено модифицировать волокнит путем частичной замены углеродного наполнителя на высокопрочное стеклянное волокно [46] (рис. У.32). Введение более дешевых стеклянных волокон снижает стоимость карбоволокнитов. [c.231]

    Почти все высокопрочные композиционные материалы конструкционного назначения изготавливаются на основе волокнистых наполнителей, в большей или меньшей степени ориентированных в каком-то определенном направлении кроме того, матрица и армирующие волокна как правило обладают различной теплопроводностью, в результате чего наблюдается определенная анизотропия свойств таких материалов. Поэтому определенные экспериментально значения теплопроводности будут зависеть от направления теплового потока относительно оси ориентации волокон. [c.302]

    Среди конструкционных композитных материалов важное место принадлежит стеклопластикам, представляющим собой композитный материал на основе различного типа стеклянных наполнителей (стеклянной ткани, стеклянного волокна, стеклянных шариков и т. д.) и полимерных связующих. При создании этих материалов перед исследователями встала проблема совместимости компонентов. Казалось бы, чем более высокими упруго-прочностными свойствами обладает связующее, тем выше аналогичные характеристики композита. Действительно, свойства исходных компонентов играют решающую роль в формировании высокопрочного композита. Однако вопрос о взаимосвязи этих свойств и связи их со свойствами композитного материала достаточно сложен и до конца еще не исследован. [c.5]

    В последние годы в узлах трения машин находят применение композиционные материалы на основе синтетических волокнистых наполнителей [1, 2, 3]. Армирование термореактивных смол алифатическими полиамидными волокнами дает возможность получить высокопрочной пластик, но с невысокой теплостойкостью 14,5]. С целью создания прочного и теплостойкого пластика в качестве наполнителя использовалось термостойкое ароматическое полиамидное волокно на основе полимера фенилон [6]. [c.147]

    УГЛЕРбД.УГЛЕРбДНЫЕ МАТЕРИАЛЫ, композиционные на основе углеродной матрицы и углеродных волокон. В качестве матрицы используют пироуглерод, коксовые остатки термореактивных смол, кам.-уг или нефтяного пека, в качестве волокон-наполнителей - высокопрочные углеродные волокна - нити (непрерывные и рубленые), жгуты, ткани, пространств, конструкции из [c.29]

    В УУКМ углеродный наполнитель содержится в виде дискретных волокон, непрерывных нитей шш лсгутов, войлоков, лент, тканей с плоским и объемным плетением, объемных структур. Волокна располагаются хаотически, одно-, двух- и трехнаправленно. Используют низкомодульные, высокомодульные и высокопрочные УВ, полученные из вискозных, полиакрилонитрильных волокон и каменноугольного пека. [c.86]

    Высокопрочные К.м. на основе керамики получают при армировании волокнистыми наполнителями, а также металлич. и керамич. дисперсными частицами. Армирование непрерывными волокнами Si позволяет получать К.м., характеризующиеся повыш. вязкостью, прочностью на изгиб и высокой стойкостью к окислению при высоких т-рах. Однако армирование керамики волокнами не всегда приводит к значит, повышению ее прочностных св-в из-за отсутствия эластичного состояния материала при высоком значении его модуля упругости. Армирование дисперсными металлич. частицами позволяет создать керамико-металлич. материалы (керметы), обладающие повыш. прочностью, теплопроводностью, стойкостью к тепловым ударам. При изготовлении керамич. К. м. обычно применяют горячее прессование, прессование с послед, спеканием, шликерное литье (см. также Керамика). [c.444]

    М. в. и металлизир, волокна и нити используют для изготовления текстильных изделий и их отделки (напр., парчовые ткани, трикотаж с люрексом, нетканые материалы, войлок, антистатич. тканн и ковры, галуны, шнуры, воинские знаки различия, шитье золотом и серебром, елочные украшения). Высокопрочные и термостойкие М. в. (молибденовые, вольфрамовые, стальные)-армирующие наполнители для легких металлов и сплавов, а также керамич, материалов, что существенно повышает их мех. св-ва и теплостойкость. Металлич. нити, а также ткани и сетки из них-наполнителн полимерных композиц материалов (напр., фрикционных-для тормозных колодок транспортных ср-в) сетки применяют также для разделения дисперсных систем (сита), в произ-ве бумаги и картона, сетки и войлоки-для фильтрации жидкостей и газов (в т.ч. агрессивных и горячих) войлоки-прокладочные и уплотнит, материалы. Мн. виды М. в. (нити, сетки, жгуты и др) используют в электро- и радиотехнике. [c.41]

    В композиции на основе 3. с. перед отверждением обычно вводят пластификаторы, не содержащие реакционноспособных групп, и разл. наполнители - порошки, высокопрочные и высокомодульные сплошные и рубленые волокна из ткани, стекловсмокна и др. материалов (см. Композиционные материалы). [c.487]

    Высокопрочные ко.мпозиты на основе керамики получают путем армирования ее волокнистыми наполнителями, а также металлическими и керамическими дисперсными частицами. Армирование непрерывными волокнами позвомет получать ККМ, характеризующиеся повьпиен-ной вязкостью, а армирование частицами приводит к резкому возрастанию прочности за счет создания барьеров на пути движения дислокаций. [c.156]


    Как правило, на поверхности волокон, подвергающихся текстильной переработке, присутствуют текстильные замасливатели, в состав которых входят такие вещества, как парафин, канифоль, поверхностно-активные вещества и др. [12, 20]. Этр вещества ухудшают смачивание поверхности волокна, что отрицательно влияет на структуру поверхностного слоя эпоксидны> полимеров [17, 18]. Кроме того, входящие в состав замаслива-телей полярные соединения с различными активными группами могут взаимодействовать с реакционноспособными группами поверхности наполнителя, препятствуя образованию прочных связей полимера с наполнителем. Замасливатели повышают водопоглощение наполнителей [21], и применение, например, стеклотканей без специальной сушки сильно увеличивает пористость материала. Количество этих веществ составляет около I % ог массы волокна, а поскольку высокопрочные армированные пластики содержат до 70% (масс.) волокна, их влияние на связующее может быть значительным, особенно если они сосредоточены в граничном слое около поверхности волокна. Для удаления текстильных замасливателей в некоторых случаях их выжигают при кратковременном нагреве стеклоткани при 350--450 °С, но это приводит к значительному уменьшению прочност) ткани и увеличивает ее стоимость, [c.220]

    Тканые наполнители производятся главным образом на основе хлопчатобумажных, стеклянных и углеродных тканей. Их используют для получения высокопрочных армированных анизотропных материалов. В зависимости от морфологии используют рулонные ткани, тканые ленты и шнуры, а также однонаправленные ленты, в которых несущие высокопрочные волокна основы соединены в непрерывную ленту редкими нитями утка . На сегодняшний день армированные такими наполнителями пластики обладают наиболее высоким комплексом физико-механических, термодеформационных, теплофизических и эксплуатационных свойств. В качестве свя- [c.21]

    В качестве связующего для В. применяют феноло (кре-золо)-формальдегндную смолу резольного или новолач-пого типа. Чаще всего В. изготовляют с использованием резольных смол, получаемых на основе фенола. Иногда для пропитки волокнистых материалов применяют и другие синтетич. смолы. В этом случае в названии материала к слову волокнит добавляются начальные слоги из названия смолы, нанр. м е л а в о л о к и и т — материал па основе меламино-формальдегидной смолы. За рубежом высокопрочные прессматериалы изготовляют на спиртовых р-рах новолачных или резольных смол иногда применяют смеси фенольного новолака с крезольным резолом. В СССР для пропитки применяют смолу без добавления к ней спирта. Помимо наполнителя и связующего, В. содержит таюке олеиновую к-ту (смазку), тальк (повышает текучесть материала при его прессовании и увеличивает водостойкость), известь, окись магния или уротропин (ускорители отверждения). [c.255]

    Для наполнения пластмасс применяют волокна из кварца, базальта, керамики (нитрид бора), а также металлич. проволоку (сталь, Fe, W, Ti) и волокна В, Ве, Мо, W. Особый интерес представляет применение мо-нокристаллич. волокон (нитевидных кристаллов, или усов — whiskers), к-рые получены из различных металлов, их окислов, карбидов, нитридов и др., а также т. наз. вискеризованных волокон, т. е. волокон из различных материалов, гл. обр. углеродных, на поверхности к-рых создан слой из нитевидных кристаллов. Диаметр усов может достигать нескольких мкм, длина — нескольких мм их относительное удлинение при разрыве составляет 1—2%. Монокристаллич. волокна отличаются исключительно высокими модулем упругости и прочностью при растяжении (см. табл. 3). При их использовании в сочетании с высокопрочными термореактивными связующими (содержание наполнителя может составлять 80% и выше) получают материалы, в к-рых удается реализовать до 50—75% нроч- [c.173]

    В производстве пластических масс также применяются различные порошкообразные и волокнистые наполнители. Материалы, представляющие собой полимеры, наполненные тонкими высокопрочными волокнами, называются армированными пластиками, или армированными полимерами. В качестве волокнистых наполнителей применяют неорганические (стеклянные, борные и др.) и органические волокна. Волокно играет роль армируюи его материала, а полимер — роль так называемого связующего, которое обеспечивает соединение волокон. В качестве связующих применяют маловязкие олигомеры, которые (на холоду или при нагревании) полимеризуются или конденсируются с образованием сетчатых полимеров, обладающих достаточно высоким модулем упругости и сравнительно небольшим удлинением. Таким образом, армированные пластики сочетают высокую прочность волокон с упругими свойствами связующего. [c.206]

    Наполнители. В производстве изделий с однонаправленным расположением волокон обычно применяют высокопрочные и высокомодульные стеклянные волокна из бесщелочного алюмоборосиликатного (марки Е), магний-алюмосиликатного и других составов стекол. Наполнитель выбирают для каждого конкретного типа изделий с учетом его конфигурации, размеров и условий эксплуатации. Возможные виды стеклянных наполнителей для изготовления пластиков с однонаправленным расположением волокон представлены на рис. IV. 10. [c.137]

    Текстура наполнителей для органоволокнитов определяется назначением изделия. Для изготовления изделий конструкционного назначения применяют высокопрочные синтетические волокна в виде нитей, жгутов, однонаправленных лент и полотен, кордных, жгутовых и других тканей. В электро- и радиотехнике используют органоволокниты, наполненные тканями или бумагой из волокон типа номекс, лавсан, полипропиленовых. В изделиях, для которых определяющими являются теплофизические свойства органоволокнитов, применяются тепло- и термостойкие безусадочные волокна в виде войлока, матов, трикотажа или многослойных тканей. Органоволокниты, применяемые в качестве защитных слоев, изго-тавливаются из нетканых материалов, а также матов и тканей различного плетения. [c.276]

    В настоящее время создан ряд композиционных материалов, в которых в качестве наполнителя или армирующего элемента применяются волокна на осно-ре ароматических полиамидов. Получение композиционных материалов из волокон на основе ароматических полиамидов и слюды описано в работе [89]. Во-лакна на основе поли-ж-фениленизофталамида диспергируют в воде (содержание волокон — 0,8%) и смешивают с водной дисперсией слюды (1%), экструдируют, сушат при 125 °С и прессуют при 280 °С и 70 кгс/см . Полученный материал имеет толщину 0,023 см, разрушающее напряжение при растяжении — 10,3 кгс/см , электрическую прочность 288 В/см. Волокна из ароматических полиамидов могут быть использованы для создания слоистых пластиков [90, 91]. Другими компонентами таких пластиков являются слюда, полиимидный отвердитель. Материал характеризуется стабильностью размеров, прочностью при растяжении, устойчивостью к истиранию, высокими теплостойкостью и электрическими характеристиками. Особо прочными являются слоистые пластики, армированные высокопрочными волокнами типа кевлар, сформованными из анизотропных растворов. [c.230]

    ПТФЭ, наполненный углеродными волокнами. Была проведена оценка фрикционных свойств ПТФЭ, наполненного как графити-рованными высокомодульными (тип I), так и неграфитированны-ми высокопрочными (тип П) углеродными волокнами. В работе [2] приведены результаты исследования влияния шероховатости поверхности контртела на скорость износа таких композиций по стали. Показано, что шероховатость поверхности контртела оказывает решающее влияние на скорость, износа композиций, содержащих графитированные волокна, и что только при очень высоком классе обработки поверхности скорость износа композиций, содержащих графитированные волокна, идентична скорости износа композиций, содержащих неграфитированные волокна, для которых шероховатость поверхности контртела практически не оказывает никакого влияния на скорость износа. Автор работы [2] считает, что более высокие антифрикционные показатели композиций, содержащих неграфитированные волокна, обусловлены шлифованием поверхности стали неграфитированными волокнами в процессе трения, которое способствует уменьшению абразивного износа. Предполагается, что проявление эффекта шлифующего действия наполнителя зависит от условий трения и раз- [c.219]

    Эпоксидные смолы представляют собой олигомеры, содержащие свободные концевые эпокси-группы, которые при взаимодействии с некоторыми веществами (отвердителями) и между собой образуют полимеры сетчатого строения. В качестве отвердителей применяются гексаметилендиамин, этиленполиамип, меламин, смолы, фталевый ангидрид, кислоты и др. Эпоксидные смолы допускают высокую степень наполнения (50%) их различными наполнителями (кварцем, стеклом, тальком, асбестом, графитом и др.). Присутствие наполнителей способствует увеличению твердости и теплостойкости, снижению усадки и стоимости пластмассы, при использовании же армирующих наполнителей в виде волокна и тканей можно получать высокопрочные материалы. [c.373]

    Армирование полимеров высокопрочными волокнами позволяет значительно улучшить их прочностные и дефор-мативные свойства, увеличить теплостойкость и изменить в необходимом направлении некоторые другие свойства получаемых композиционных материалов. Наибольшее практическое применение получили материалы на основе полиэфирных, эпоксидных, фенольных и кремнийорганических смол. В качестве армирующих наполнителей используют стеклянные, асбестовые, хлопковые волокна. Наибольшее распространение получило стеклянное волокно, в связи с чем эти материалы и называют стеклопластиками. В последние годы для повышения жесткости материалов применяют волокна на основе углерода, бора, карбидов металлов. [c.349]

    Связующее тонких формовочных порошков для керамики и стержневых смесей в литейном производстве, водный раствор в чистом виде и в смеси с наполнителем (каолин, карбонат кальция) применяется в качестве клеев для кожи, тканей, клей для цинковых клише, печатных плат, офсетной печати, сырье для получения поливи-нилацеталей, эмульгатор и стабилизатор при эмульсионной и суспензионной полимеризации винилацетата, винилхлорида, стирола и др. мономеров, сырье для высокопрочного синтетического волокна, материала для шлихтования волокон и пряжи из натуральных, искусственных, синтетических волокон, эмульгатор для приготовления эмульсий взамен метасиликата натрия при перекисном отбеливании хлопчатобумажных цветных ниток, пропиточный материал для маслостойкой, прочной, полупрозрачной бумаги, пленка для дублирования бумаги, временная защитная пленка для нанесения на декоративные поверхности, разделительный слой при контактном формовании изделий из стеклопластика, светочувствительная эмульсия для кинескопов цветных телевизоров Компонент стержневых смесей, шлихтующий препарат, сырье для поливинилацетатных дисперсий [c.139]

    Для повьипения стабильности свойств в условиях повышенных температур и водостойкости в полиамиды вводят различные наполнители. Так, при введении до 30—33% от массы полимеров стеклянного волокна механическая прочность и теплостойкость возрастают в 2—3 раза значительно уменьшается ползучесть и повышается износостойкость. Промышленностью выпускаются также высокопрочные полиамиды, армированные стеклянной тканью (50—70% по массе). В качестве дисперсных наполнителей применяют графит, тальк, кварц (от 1,5 до 60%). При этом улучшаются антифрикционные, электроизоляцио[1ные свойства, уменьшается деформация под нагрузкой. [c.77]

    Полимерные композиционные материалы с волокнистым наполнителем (композиты)—высокопрочные материалы, состоящие из полимерной матрицы и упрочняющего волокнистого наполнителя (арматуры). Армирующие волокна позволяют достичь высокой прочности и жесткости композитов, снижают ползучесть, повыщают теплостойкость, а полимерное связующее создает прочные связи между волокнами и таким образом обеспечивает монолитность материала. Чаще всего композиты используются как элементы силовых конструкций, поэтому их относят к группе конструкционных материалов. Свойства армированных [c.348]

    Вид армирующего наполнителя во многом определяет выбор метода формования изделий. Так, элементарное стеклянное волокно, получаемое вытяжкой через фильеры из расплава, целесообразно использовать для получения высокопрочных однонаправленных стеклопластиков СВАМ нити, жгуты, ленты -при намотке оболочек, рубленое волокно - для метода напыления, холсты и ткани - при контактном формовании, прессовании, прямой намотке труб, хаотично ориентированные волокна - при контактном формовании и прессовании. [c.758]

    Вид армирующего наполнителя во многом определяет выбор метода формования изделий. Так, например, элементарное стеклянное волокно, получаемое вытяжкой через фильеры из расплава, можно использовать для получения высокопрочных однонаправленных стеклопластиков — СВАМ нити, жгуты, ленты целесообразно использовать при намотке оболочек рубленое волокно более всего пригодно для метода напыления холсты и ткани используются в основном при контактном формовании, прессовании, прямой намотке труб композиты, в которых использованы хаотично ориентированные волокна, также удобно применять при контактном формовании и прессовании. [c.235]

    Наиболее известными являются эпоксидно-каучуковые мастики и мастики на битумной основе существуют и восковые покрытия. Эпоксидно-каучуковые материалы — светлые по тону и высокопрочные как для любой эпоксидной композиции, в них перед использованием добавляют жидкий отвердитель. Чтобы полученное покрытие было более эластичным и не хрупким, отвердителя берут минимальное количество. Мастики на битумной основе содержат в качестве наполнителей резинокаучуковые добавки и искусственное волокно. Некоторые фирмы выпускают материалы для антикоррозионной обработки В аэрозольной упаковке. [c.242]


Смотреть страницы где упоминается термин Волокна как наполнители высокопрочные: [c.134]    [c.299]    [c.276]    [c.33]    [c.102]    [c.175]    [c.256]    [c.409]    [c.255]    [c.252]    [c.256]    [c.409]    [c.126]    [c.269]    [c.217]    [c.88]    [c.372]    [c.756]   
Основы переработки пластмасс (1985) -- [ c.64 ]




ПОИСК





Смотрите так же термины и статьи:

Наполнители



© 2025 chem21.info Реклама на сайте