Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химический состав и строение асфальтенов

    Успешное решение структурно-молекулярных вопросов во многом зависело от разработки эффективных методов разделения смол и асфальтенов — этих сложных гетерогенных смесей, на более простые группы близких по составу и строению веществ. Еще Д. И. Менделеев настойчиво пропагандировал и сам применял в своих опытах физические методы разделения и исследования нефтей. В статье По нефтяным делам , опубликованной в 1885 г., он писал, что ...химический состав нефти не может быть иначе определяем, как при помощи первоначального физического разделения составных начал нефти на основании их летучести и различия в температуре кипения, растворимости и тому подобных свойств [1, с. 426], и далее ...я убедился, что важнейший и новый материал лабораторные точные исследования нефти могут дать именно со стороны физического анализа нефти [1, с. 428]. [c.90]


    ХИМИЧЕСКИЙ СОСТАВ И СТРОЕНИЕ АСФАЛЬТЕНОВ [c.511]

    Основные положения доклада сформулированы автором следующим образом. Асфальтены и нефтяные смолы суть две группы, составляющие коллоидно-дисперсную часть сырой нефти. Эти две группы веществ различаются между собой по составу, строению-размерам частиц и свойствам. При переработке нефти коллоидные частицы концентрируются в остатках от перегонки, не претерпевая существенных изменений в структуре. Асфальтены содержат преобладающее количество содержащихся в нефти неуглеводород -ных компонентов. Нефтяные смолы построены почти исключительно из углеводородов. Рассматривается состав смол и асфальтенов и причины их сильно различающихся реологических свойств, а так же влияние поверхностно-активных свойств веществ, содержащихся в асфальтенах, на смачивающие свойства битумов. Нельзя не согласиться с утверждением Г. Неймана, что многие свойства асфальтенов, прежде всего поверхностно-активные, часто довольно сильно меняются при отсутствии существенных изменений в химическом составе и структуре последних, что изменения этих свойств могут быть обусловлены наличием в асфальтенах примесей свободных нафтеновых кислот и редкоземельных солей нафтеновых кислот. Справедливо и утверждение о гетерогенности асфальтенов и нефтяных смол, а также о их слабой изученности. Однако два основных вывода доклада Г. Неймана о чисто углеводородном составе нефтяных смол и об отсутствии изменений в строении смол и асфальтенов при высокотемпературной переработке нефти, нахо- [c.41]

    Наибольший интерес среди высокомолекулярных веществ представляют асфальтены..Асфальтены весьма близки но элементарному составу и вероятно, по строению к нефтяным смолам, но отличаются от последних более высоким (в 2—3 раза) молекулярным весом Ц]. В зависимости от химической природы нефти и концентрации асфальтенов последние могут находиться в нефтях в виде истинных или коллоидных растворов. В этих коллоидных системах асфальтены являются дисперсной фазой, а углеводороды и смолы — дисперсионной средой. Состояние таких коллоидных систем зависит от многих факторов, важнейшими из которых являются химическая природа и молекулярный вес углеводородов, смол и асфальтенов, входящих в состав нефти, концентрация асфальтенов, количественное соотношение углеводородов, смол и асфальтенов в системе [2, 31. [c.33]

    По химическому составу битумы представляют собой смесь углеводородов (в основном гибридного строения) и асфальтосмолистых веществ, в состав которых, кроме углерода и водорода, входят кислород, сера, азот и незначительные количества металлов V, N1, Ре, Со и др. Битумы характеризуются групповым составом, процентным содержанием в них химически однородных фракций— масел, смол, асфальтенов, карбенов и карбоидов. Сочетание этих веществ образуют коллоидную структуру, в которой дисперсионной средой являются масла и смолы, а дисперсной фазой — асфальтены. Соотношение фаз" в системе и определяет физико-химические и физико-механические свойства битума. Масла и смолы улучшают его упругопластические свойства, особенно при низких температурах, асфальтогеновые кислоты повышают адгезию. Асфальтены сообщают битуму пластичность, снижают температуру хрупкости и повышают атмосферостойкость в битуме они являются основным структурообразующим компонентом. Сопоставление свойств и группового состава различных битумов дает основание считать, что битумы с повышенным содержанием смол и асфальтенов более водо- и ат- [c.30]


    М. Бестужев [179—181] детально рассматривает физические свойства асфальтенов (окраска, твердость, температура плавления, коллоидные свойства и др.), связывая их с химическим составом и строением и объясняя их этими последними. Сравнивая состав и свойства асфальтенов различного происхождения (табл. 30), он подчеркивает, что, несмотря на их различия, все они характеризуются удивительным постоянством в отношении таких показателей, как отношение С Н, растворимость в низших гомологах парафиновых углеводородов и некоторых других, что является доказательством близости их химического строения. [c.352]

    Особенности применения ЭХ дпя разделения нефтепродуктов связаны в первую очередь со сложностью состава разделяемой смеси. В состав нефтепродуктов входят соединения различного химического строения, имеющие соответственно и молекулы разной конфигурации, обладающие различной растворимостью, адсорбционной способностью и т.д. Полимеры же, дня исследования которых в первую очередь разрабатывалась и широко использовалась эксклюзионная хроматография, представляют собой довольно однородную в химическом отношении смесь, компоненты которой различаются главным образом размером молекул. Другим не менее важным обстоятельством, обусловливающим особое поведение нефтепродуктов при эксклюзионном разделении, является коллоидная структура тяжелых остаточных нефтепродуктов (гудроны, битумы) и вьщеленных из них высокомолекулярных соединений (асфальтенов). При растворении этих продуктов в разных растворителях, при разной степени разбавления могут наблюдаться явления диссоциации-ассоциации коллоидных частиц, приводящие к дополнительным осложнениям при интерпретации результатов ЭХ-разделения. [c.74]

    Отсутствие информации о химическом составе парафинов, смол и асфальтенов в АСПО и их свойствах не позволяет прогнозировать состав растворителя, исходя из состава отложений. Целью нашей работы является определение особенности строения состава нефтяных отложений. [c.171]

    О химическом составе вакуум-дистиллята можно судить на основании исследования М. С. Князевой, В. А. Ланина, М. В. Прониной [7], изучивших состав тяжелого масла (с электрофильтров конденсационной системы) смолы черемховских углей, полученной в трехзонных печах Лурги. Авторы нашли, что тяжелое масло имеет следующий состав 0,2% растворимых в воде соединений, 11,9% фенолов, 1,3 /о оснований, 8,2% асфальтенов, 25,2% кислород-, азот-, серусодержащих нейтральных соединений, 51,0% углеводородов (в том числе н. парафины — 10,6%, изопарафины и цикланы — 2,8%, непредельные нормального строения — 2,6%, непредельные изо- и циклического строения — 7,61%, нафтено-ароматические с одним ароматическим кольцом и боковыми цепями — 8,7%, ароматические полиядерные — 12,6%, потери — 6,1%). [c.39]

    Физические свойства растворов асфальтенов и смолисто-асфальтеновых вешеств вообще подробно исследовал Дармуа [5]. Исходя пз того, что не существует резкого различия между смоламп и асфальтенами и что в такпх сложных системах, как природные и искусственные асфальты, очень трудно установить связь между химическим составом системы и ее физическим состоянием, он изучал чисто физическую сторону вопроса, а именно физические, прежде всего реологические свойства системы в целом и основных компонентов ее составляющих (асфальтены, смолы углеводороды) в отдельности, не задаваясь целью выяснить их химический состав и строение. [c.498]

    Для определения распределения атомов углерода в нафтеновых, парафиновых и ароматических структурах масляных фракций довольно широкое распространение получил п—(1—М метод [57], основанный н>а определении трех экспериментальных величин — показателя преломления ( ), плотности и среднего молекулярного веса (М). Однако-для определения группового состава асфальтенов он мало пригоден из-за значительного содержания гетероатомов, трудности разделения на фракции со сравнительно узкими пределами молекулярных весов и экспериментальной сложности определения коэффициентов преломления. Поэтому для определения структурно-групповых параметров смол и асфальтенов был применен метод Ван-Кревелена [58] в модифицированном виде, исходными данными для которого являются плотность и элементарный состав образца. Пользуясь этим методом, авторы [59] сделали вывод о том, что основу химического строения асфальтенов составляют полициклические конденсированные системы. [c.14]

    Впервые экспериментально осуш ествленный переход от нефтяны асфальтенов к смолам и углеводородам в условиях избирательного каталитического гидрирования позволил получить прямые доказательства наличия генетической связи в химическом строении асфальтенов, смол и высокомолекулярных углеводородов нефти [72—74]. Эти работы с несомненностью свидетельствуют о справддливости предположения о том, что углеродный скелет асфальтенов нефтяного и каменноугольного происхождения состоит из полициклических конденсированных ароматических систем. Количество колец в этой структуре, соотношение между карбо- и гетероциклическими структурными элементами, степень конденсированности структуры и соотношение атомов С циклического и ароматического характера, как и общее содержание гетероатомов в молекуле и соотношение главных из них (О, 8, К), в сильной степени зависят от химической природы нефти и природного асфальта, из которых выделены асфальтены, а также от условий их переработки. Зависят от происхождения асфальтенов и их свойства растворимость, молекулярный вес, температура плавления, фракционный состав и т. д. Интересные в этом отношении данные были получены при разделении асфальтенов разного происхождения при помощи избирательно действующих растворителей. [c.527]


    Химический состав природных нефтяных битумов и битумов серных руд очень сложный и характеризуется разными типами углеводородов парафиновыми С Н2п + 2, нафтеновыми СпНа , ароматическими С Нт, гетероциклическими и гибридного строения (т. е. состоящими одновременно из ароматических колец и боковых парафиновых цепей). Битумы можно рассматрйвать как растворы высокомолекулярных соединений, представляющие собой двухфазную систему асфальтены — высокомолекулярные соединения, и, мальтены, состоящие из масел и смол и являющиеся растворителями для асфальтенов. Б состав битумов входят также незначительные количества веществ, называемых карбенами и кар-боидами, — это наиболее обогащенные углеродом высокомолекулярные соединения. [c.24]

    Уже отмечалось, что состав и строение нефтяных смол и асфальтенов имеют много общего, прежде всего, это сходство элементов структуры углеродного скелета и их элементного состава. В сырых нефтях и в тяжелых остатках от прямой перегонки нефтей значение величин отношения смолы/асфальтены варьирует, как правило, в пределах от 9 1 до 7 3, а в окисленных битумах и тяжелых крекинг-остатках — от 7 3 до 1 1 [6]. Большая физическая и химическая гетерогенность смолисто-асфальтеновых веществ, слабая термическая стабильность и близость структуры и элементного состава их молекул делают крайне трудной задачу их разделения и нахождения четкой границы раздела, если таковая существует. В распределении по молекулярным весам нефтяных асфальтенов и смол есть известное подобие спектру полимергомологов — от олигомеров до высокомолекулярных полимеров. Различие в элементном составе смол и асфальтенов иллюстрируется данными, полученными разными исследователями на обширном материале нефтей, асфальтов и тяжелых нефтяных остатков. Асфальтены, как правило, осаждались н-пентаном и переосаждались из бензольного раствора смолы си-ликагелевые, т. е. выделенные адсорбционной хроматографией на крупнопористом силикагеле. [c.45]

    Путь создания искусственных моделей не всей молекулы асфальтенов, а ее основных структурных звеньев позволяет более надежно и полно воспроизвести в синтетической модели состав, свойства и строение реальных объектов исследования. Учитывая, что первой стадией высокотемпературных превращений асфальтенов должен быть процесс распада их на основные фрагменты, особенно по связям атомов углерода с гетероатомами, фрагменталь-ное моделирование позволит вплотную подойти к выяснению химизма реакций превращения асфальтенов. Иными словами, открывается наиболее короткий и прямой путь для изучения научных основ химической переработки и использования смолисто-асфальтеновой части нефтей, так как именно эта часть нефти (высокомолекулярные неуглеводородные соединения) используется наименее эффективно, и поэтому именно она является основным источником дальнейшего повышения степени использования нефти. [c.107]

    Разработка комплексного подхода к анализу углеводородных объектов и переход с низкого уровня детализации спектральной структурной информации (фрагментный состав) на более высокий (укрупненные структурные фрагменты) помогли создать целостную систему представлений о химическом составе тяжелых нефтяных остатков, обусловливающих генетическое родство масел, смол, асфальтенов, и выявить структурно-фупповые признаки, которыми определяется различие химического строения этих компонентов нефти [c.288]

    Количествекное соотношение между углеродом и водородом в смолах, имеющих разнообразный молекулярный вес, укладывается, по данным Н. А. Васильева, в эмпирические формулы от С Н2п-8 до С Н2п-4о (без учета гетероатомов — О, 3 и N). Отсюда следует, что но своему строению смолы представляют собой полициклические соединения. Химические свойства нейтральных смол (и асфальтенов) подробно исследовал И. Маркусон. Он показал, что кислород, входящий в состав смол, имеет нейтральные функции, т. 6. не образует ни карбоксильных, ни гидроксильных, ни карбонильных, ни сложисэфирных групп. Таким образом, смолы — это, иовидимсму, сложные гетероциклические соединения, в которых сера илп кислород могут играть роль мостика, соединяющего углеродные атомы. Н. И. Черножуков, на основании результатов исследования и окисления смол из грозненской нефти, предположительно считает, что этим смолам можно приписать структуру следующего тина  [c.53]

    В состав ВМСН входят в основном соединения гибридного строения как углеводородного, так и неуглеводородного характера. Большое многообразие этих соединений, которые помимо того и генетически связаны между собой, не позволяет выделить какие-либо узкие фракции однородных по типу соединений, которые бы однозначно определяли химические и физические свойства тяжелых нефтяных остатков. Вследствие этого существующие методики разделения ВМСН позволяют получить только группы соединений с более или менее сходными физико-химическими свойствами. В настоящее время наибольшее распространение получили методики, включающие выделение асфальтенов осаждением алканами (Сб— Се) и адсорбционно-хроматографическое деление растворимой части — мальтенов на силикагеле на 5—6 фракций масел и смол, которые различаются по полярности входящих в них соединений [1—3]. [c.6]

    Известны также гетероциклические соединения нефти, содержащие в своей молекуле атомы серы и кислорода. Это вполне согласуется с представлениями о том, что в основе структуры молекул смол и асфальтенов лежат поликонденси- рованные циклические системы, построенные из карбо- и гетероциклических колец. Хотя и нелегко, но все же возможно отделить от смол близкие к ним по строению углеродного скелета высокомолекулярные полициклические углеводороды. Методы, пригодные для осуществления такого разделения, должны основываться на различии в свойствах этих двух классов высокомолекулярных соединений нефти, обусловленном появлением в молекулах смол большего или меньшего количества гетероциклических структур. Это различие быть может можно успешнее использовать на основе химических методов (гидрирование, окисление и др.). Во всяком случае нельзя согласиться с высказанным отдельными исследователями предположением, что смолы, выделенные из нефтяных остатков, представляют собою механическую смесь углезодородов с сера-и кислородсодержащими органическими соединениями. Если бы это было так, то тогда элементарный состав смол, выделенных различными методами, различался бы в очень широких пределах. Между тем как сопоставление многочисленных данных анализов показывает, что такие характеристики, как отношение С Н, удельный и молекулярный веса, содержание кислорода и серы, а также сумма всех гетероэлементов, сохраняют довольно устойчивое постоянство для нефтей близкой химической природы, а отношение С Н — для смол большинства исследованных нефтей. Конечно же, полнота отделения углеводородов от смол в сильной степени зависит как от их химической природы, так и от совершенства применяемых методов разделения, что не может не сказываться в большей или меньшей степени на результатах анализов смол. [c.368]

    В последние 10—15 лет, благодаря использованию комплекса методов физико-химического анализа, удалось значительно расширить представление о принципах химического строения веществ, входящих в состав гудронов и битумов. Сочетанием хроматографического и хроматомасс-спектроскопического методов анализа были выделены углеводороды из тяжелых нефтяных остатков (>550°С), идентичные по строению углеродного скелета углеводородам, входящим в газойлевую часть нефти. Это к-алканы и изоалканы с числом углеродных атомов от 30 до 40—45 и полициклические соединения типа стерана (тетрациклические) и гопана (пентациклические). Полициклические соединения могут быть полностью насыщенными (полициклонафтены) или содержать одно или два ароматических кольца. В молекулах таких углеводородов полициклическая часть имеет ряд метильных заместителей и один длинный, часто разветвленный, алкильный заместитель (С4—С12). Помимо доказательства строения отдельных индивидуально выделенных углеводородов, проводились исследования характерных структурных параметров соединений, входящих в относительно узкие (хроматографические) фракции. На основании экспериментальных данных о структурных параметрах расчетным путем (интегральный структурный анализ) строились среднестатистические гипотетические формулы веществ, составляющих данную фракцию. Известно, что несмотря на большое разнообразие нефтей даже в смолах и асфальтенах колебания в содер-274 [c.274]


Смотреть страницы где упоминается термин Химический состав и строение асфальтенов: [c.527]    [c.434]    [c.20]    [c.351]    [c.102]    [c.96]    [c.368]    [c.167]   
Смотреть главы в:

Высокомолекулярные соединения нефти -> Химический состав и строение асфальтенов

Высокомолекулярные соединения нефти Изд2 -> Химический состав и строение асфальтенов




ПОИСК





Смотрите так же термины и статьи:

Строение химическое

Химическое строение и состав



© 2025 chem21.info Реклама на сайте