Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Треонин применение

    Познание процессов промежуточного обмена аминокислот явилось результатом множества разнообразных экспериментальных исследований и наблюдений. Работы в области физиологии и биохимии питания позволили получить важные данные, которые в конечном счете привели к выяснению ряда реакций обмена, а в двух случаях— к открытию и идентификации новых аминокислот (метионин и треонин). Применение мутантных штаммов микроорганизмов оказалось весьма эффективным способом исследования процессов обмена, и в частности тех процессов, с которыми связан биосинтез аминокислот. В культурах мутантов, у которых блокированы различные звенья биосинтеза, накапливаются промежуточные продукты, которые нередко удается обнаружить по их способности обеспечивать рост других мутантных штаммов. Наблюдения на людях, страдающих наследственными пороками обмена веществ, наряду с исследованиями обмена у микроорганизмов сыграли большую роль в выяснении нормальных путей обмена аминокислот. Ряд интересных сведений дали исследования с перфузией изолированных органов, со срезами тканей, гомогенатами и экстрактами тканей и очишенными ферментами. Широкое применение в изучении промежуточного обмена находят меченые соединения. Этот метод, часто используемый в сочетании с другими подходами, оказался путеводной нитью к отысканию и расшифровке многих реакций обмена. [c.306]


    Азидный метод и в настоящее время имеет большое практическое значение благодаря ряду преимуществ это малая степень рацемизации, возможность введения в реакцию серина и треонина без защиты гидроксильной функции, а также разнообразные возможности, открываемые применением N-защищенных гидразидов. [c.141]

    Производные аминокислот обычно циклизуются труднее, особенно в случае глицина, чем те же аминокислоты, входящие в состав пептидов. Для синтеза производных фенил-тиогидантоина (ФТГ) [86, 91] или количественного определения N-концевых остатков ФТК-производные часто циклизуют в 1 н. растворе НС1 в течение 1 час при 100°. Однако в этих условиях ФТГ-производные серина, треонина и цистина нестабильны, поэтому их не удается выделить и количественно определить. Кроме того, все ФТГ-производные в кислой среде разлагаются, причем степень разложения возрастает с увеличением кислотности и повышением температуры [114, 317]. В водной среде максимальный выход ФТГ-производных достигается при действии сильной кислоты при сравнительно низких температурах и по возможности меньшей продолжительности реакции. При низкой температуре реакционной смеси и применении концентрированных кислот (1—5 н.) удалось синтезировать ФТГ-производные серина, треонина и цистина в водной среде [159, 195]. Кроме того, эти соединения легко получаются в среде уксусная кислота — HG1 [289]. [c.240]

    Применение. Витамин 8,2 применяют при лечении злокачественной анемии, цирроза печени, при нервных и психических расстройствах. Он широко используется в кормопроизводстве. В настоящее время большинство комбикормов для свиней и птиц обогащают витамином В а, особенно благоприятное действие на животных оказывает сочетание витамина с малыми дозами антибиотиков, в частности, биомицина. Витамин В]з воздействует на кроветворную функцию и на обмен белков, принимает участие в регуляции оптимального содержания в организме животного метионина, валина, треонина, лейцина, изолейцина. [c.46]

    Поведение 1,2-аминоспиртов во многом сходно с поведением 1,2-гликолей. Образование аммиака позволяет количественно контролировать реакцию. Применение этого метода видно на примере определения треонина  [c.205]

    Эффективность действия лизина значительно повышается при использовании его совместно с а-триптофаном или треонином. При скармливании комбикормов, содержащих лизин и а-триптофан, прирост живой массы увеличивается на 49%, удельные затраты кормов сокращаются на 34%. Одновременная добавка в корм свиней лизина (3,8 кг/т) и треонина (1,8 кг/т) способствует ускорению привеса животных в 1,8 раза. В связи с успешным применением триптофана и треонина в животноводстве ожидается повышение мирового спроса на них до нескольких тысяч тонн в год. [c.289]


    Некоторые аминокислоты легко ацилируются ТФА-имида-золом при температуре от О до 20 °С, но в случае серина и треонина появляются многочисленные пики. По-видимому, все эти методы имеют ограниченное практическое применение для количественного получения соответствующих производных. [c.108]

    Оксиаминокислоты. Заслуживает внимания успешное применение карбобензилокси-Ь-серина [213—216], карбобензилокси-L-оксипролина [213, 217] и фталоил-Ь-треонина [213, 217] с неза- [c.222]

    В опытах на крысах с применением треонина, меченного и С в метильной группе, было найдено, что примерно от Vs ДО 7з треонина, введенного с пищей, расщепляется на глицин и уксусную кислоту [256]. Последняя, очевидно, образуется путем [c.336]

    Пептидные связи по обеим сторонам остатка аспарагиновой кислоты в молекуле белка особенно легко гидролизуются разбавленными кислотами [233], приче степень гидролиза зависит от pH раствора, а не от концентрации используемой кислоты [32, 189]. Так, из альбумина сыворотки крови быка за 18 час при 100° и pH 2,14 выделяется 44% остатков аспарагиновой кислоты в виде аминокислоты, в то время как при pH 3,15 освобождается всего 26% остатков кислоты [189]. При экстракции эластина 0,25 М щавелевой кислотой при 100° был получен растворимый белок единственной выделенной свободной аминокислотой оказалась аспарагиновая кислота [235]. Однако присутствие в продукте реакции пептидов с короткой цепью и результаты определения концевых груМп [24, 234] указывают на значительную степень гидролиза и других пептидных связей. Исследования, проведенные на модельных соединениях [73], позволили сделать вывод о лабильности связей остатков серина и треонина. Применение описанного выше метода гидролиза для исследования цепи А окисленного [c.226]

    Оксиаминокислоты. Опубликованные данные о применении метода с использованием угольного ангидрида с оксиаминоки-слотами (серии, треонин, оксипролин) ог1заничсны. Карбобен- [c.186]

    Нет никаких даннйх о возможном применении смешанных ангидридов таких окси аминокислот, как серии и треонин. Однако гантотеин был голучен с выходом 38% из смешанного ангидрида бензойной кислоты и пантотеновой кислоты, которая содержит две гидроксильные группы [75]. [c.217]

    По-видимому, эта реакция является общей для О-амино-ацилсйлициловых кислот. Наличие бензольного кольца необходимо для того, чтобы реагирующие., группы находились в пространственной близости и реакция могла протекать в мягких условиях. Реакция не идет в случае р-оксимаслйной кислоты, серииа и производных цистеина. Однако применение трст-бу-тилата калия привело к успешной перегруппировке производных серина и треонина [296]. [c.246]

    В случае применения безводных органических растворителей, содержащих кислоту, возможна миграция ацильных групп, находящихся у определенных остатков оксиаминокислот. Так, при определении концевых групп по методу Эдмана (см. стр. 237—245), согласно которому производное пептида обрабатывают нитрометаном и НС1 [87], уксусной кислотой й НС1 [88] или диоксаном и НС1 [186] для циклизации Ы-Конце-вого остатка, установлено [2, 314], что на последующих стадиях отщепления обнаруживаются небольшие Количества Ы-концевь1Х остатков серина или треонина. В одном случае это привело к неправильному выводу о последовательности аминокислотных остатков [2, 186]. Обычно исследуемое соединение обрабатывают СвНаЫСЗ или динитрофторбензолом при pH 8,5. Если же белок находится в среде с такой величиной pH до добавления реагента, то свободные аминогруппы, появляющиеся в результате миграции ацильной группы от N к О, вновь образуют пептидные связи. Предварительную [c.222]

    Эта реакция не пригодна для отщепления С-концевых остатков пролина, так как они не образуют тиогидантоин, остатков аспарагиновой и глутаминовой кислот, которые образуют циклические ангидриды, а не тиогидантоины (аспарагин и глутамин, наоборот, дают тиогидантоины [301]), а также остатков серина, треонина, цистина, аргинина и лизина [19, 301], которые неустойчивы при циклизации или регенерации аминокислоты из тиогидантоинового производного. Таким образом, этот метод находит весьма ограниченное применение для прямого определения строения пептидов и белков. Для определения С-концевого остатка по разности [107] реакция может оказаться более полезной, но ее все же нельзя использовать для определения аспарагиновой и глутаминовой кислот и пролина. Однако путем микробиологического анализа [107], специфичного для остатков /-аминокислот, эти аминокислоты могут быть определены по потере оптической активности на 50% вследствие рацемизации в том случае, когда они являются С-концевыми. [c.247]

    Пептиды недостаточно летучи, чтобы их можно было изучать епосредственно с помощью масс-спектрометрии электронного удара. Первые попытки применения масс-спектрометрии для определения последовательности включали предварительное ацилирование аминогрупп и этерификацию карбоксильных групп. Масс-спектры таких производных показали, что расщепление происходит с обеих сторон карбонильных групп. Расщепление связи С—N приводит к ионам ацилия —ЫНСНДС=0+, в то время как расщепление связи С—С дает альдиминиевые ионы —+NH= HR. Это основная тенденция кроме того, происходит дополнительная фрагментация боковых групп некоторых аминокислот, включая валин, лейцин, аспарагин, серин, треонин и цистеин. [c.278]


    Исследования с применением С и N показали, что это звено (27) имеет предшественником L-треонин. Работы с Р. shermanii указывают, что треонин непосредственно декарбоксилируется в ферментативной реакции, зависимой от тиолов и корриноида [56]. [c.664]

    БОК- -аминопроизводные аланина, фенилаланина, треонина, метионина, лейцина и др. были получены с выходами около 70% либо методом смешанных ангидридов, либо с применением дициклогексилкарбодиимида. Полученные полимерные сложные эфиры (III) были использованы в качестве промежуточных соединений для синтеза пептпдов в этнлацетате. Нерастворимые побочные продукты отделяли фильтрованием или центрифугированием и после быстрого удаления растворителя получали хроматографически чистые пептиды. [c.565]

    В 1973 г. Н. С. Егоровым была установлена полная структурная формула полимиксипа М с применением впервые разработанных методов специфического химического расщепления по остаткам треонина (метод К->0-ацильной миграции и окислительный метод ) [53]. Из смеси продуктов расщепления методом электрофореза выделены три К-Опр-пентида (рис. 3.5). Идентификация С-концевых аминокислот и аминокислотный анализ этих пептидов позволили определить их строение и с учетом ранге полученных данных по частичной структуре полимиксипа М [54,66] порядок их чередования в антибиотике  [c.133]

    Применение. Наибольший практич. интерес представляют алифатич. аминокарбоновые к-ты, являющиеся основой синтетич. и природных полиамидов (белков, полипептидов). а-А. используют для получения синтетич. полипептидов. L-a-A., и в особенности те, к-рые не синтезируются в организме человека и наз. незаменимыми А. (валин, лейцин, пзолейцин, фенилаланин, треонин, метионин, лизин, триптофан), широко применяют в медицинской практике. ш-А. п их лактамы служат для промышленного синтеза полиамидов. Ароматич. А. используют в синтезе красителей и лекарственных препаратов. На основе ампиокарбоновых п амипофосфоповых к-т синтезируют селективные комплексообразующие иоиообменники. [c.55]

    Для применения этого способа в случав белков необходимо точно знать межатомные расстояния в рассмотренных атомных группах. Поэтому Корей и Полинг особенно точно измерили межатомные расстояния различных аминокислот и некоторых синтетических пептидов, а именно гликоколя, Ь-аланина, Ь-треонина, Ь-оксипролина, В,Ь-серина, глицилглнцина, N-aцeтилглицинa и N,N -диглицил-[ и тинa. На основании этих измерений оказалось возможным вычислить межатомные расстояния в плоской растянутой полипептидной цепи (рис. 30). [c.436]

    Эти производные тоже использовали для определения М-кон-цевых аминокислот и последовательности пептидов [34]. Они хорошо хроматографируются на силиконовых жидких фазах, однако известную трудность представляют серин, треонин, аспарагин, глутамин и основные аминокислоты [96]. Вторую карбоксильную группу аспарагиновой и глутаминовой кислот предварительно этерифицировали трифторидом бора в метаноле. Можно думать, что ГХ этих производных, как и ДНФ-производ-ных, не найдет широкого применения. [c.90]

    Если полиаминоспирты содержат в боковых цепях гидроксильные группы (образующиеся при восстановлении полифунк-циональных аминокислот, таких, как глутаминовая и аспарагиновая кислоты, а также серина, треонина или оксипролина, остатки которых могут присутствовать в пептиде), необходима дополнительная модификация пептида. Авторы предложили замещать гидроксильные группы хлором (путем обработки пептида тионилхлоридом) с последующим восстановлением Е1А1Н4 или ЫАШ4. Относительная сложность химической обработки и наличие большого числа пиков в масс-спектрах явилась причиной того, что этот метод не нашел широкого применения. [c.191]

    Применение. В микроскопии в качестве реактива для определения гликолей [1] и аминоспиртоа [2] (к последним относятся также серии, треонин, окси-лизин) в гистологии для выявления муцина [3] в гистохимии при окраши,Ьа-нии гипофиза человека по Адамсу [4] и Вильсону — Эзрину [5] и для выявления декстранов по реакции-ШИК [б, 7] в гистохимии ферментов для выявления глюкозанфосфорилазы по реакции ШИК [8, 9]. [c.161]

    Заслуживает обсуждения одно наблюдение, сделанное в лаборатории автора и касающееся этой хорошо известной реакции. При обработке М-карбобензилоксиаминоацилсерина или треонина бромистым водородом в нитрометане [65] обычно в осадок выпадает бромгидрат М-дипептида немедленно после его образования, что предотвращает перегруппировку в 0-дипептид. С другой стороны, применение бромистого водорода в ледяной уксусной кислоте [26] приводит к перегруппировке и О-дипептид может быть выделен. Чтобы избежать опасности дезамидирования аспарагиновых или глутаминовых пептидов при последующем омылении эфира, вместо соответствующего эфира можно применять натриевую соль аспарагина или глутамина, хотя выходы в этом случае будут ниже [66]. [c.186]

    В качестве аминных компонентов для синтеза пептидов были использованы этиловый эфир глицина, этиловый эфир глицил-глицина, этиловый эфир Ь-лейцина, метиловый эфир Ь-тирозина, метиловый эфир 5-бензил-Ь-цистеина, этиловый эфир и-ами-нобензойной кислоты [244] и этиловый эфир ОЬ-треонина [246, 247]. О возможности применения натриевых солей аминокислот или пептидов в качестве аминокомпонентов указаний нет,- но можно было бы ожидать выходов ниже 45—77%, которые получались с эфирами аминокислот и пептидов в инертных растворителях. Было обнаружено, что выходы снижаются в присутствии воды или этилового спирта, так как они препятствуют начальной реакции присоединения [244, 246]. Влияние воды на стадию образования амида не установлено. [c.231]

    Фосфитные смешанные ангидриды применялись для получения пептидов глицина, DL-аланина, DL-валина, L-лейцина, L-фенилаланина, L-тирозина и L-лизина. Возможность применения этого метода, по-видимому, такая же, как и метода со смешанными ангидридами на базе алкилугольных кислот. Можно ожидать, что выходы будут ниже среднего в случае производных L-серина, L-треонина, L-аспарагина и L-глутамина. Однако если применить обратный порядок добавления реагентов так, чтобы предпочтительно образовывался фосфитамид, а не смешанный ангидрид, то это должно дать возможность избежать этого затруднения. Пептиды на основе L-аспарагина были получены по амидному методу [66, 415, 416]. Этот метод применялся также для синтеза пептида из L-аргинина [23, 406] и ключевых промежуточных соединений окситоцина [417, 418] и аргининвазо-прессина [86]. [c.297]

    Пзта биосинтеза диаминопимелиновой кислоты неизвестны однако данные, полученные на мутантных штаммах, а также в исследованиях, проведенных с применением изотопов, позволяют предполагать, что предшественником диаминопимелиновой кислоты может служить аспарагиновая кислота (но не треонин или гомосерин) [117, 1034, 1035, 1141]. Возможно, что у Es he-rikia oli гомосерин и лизин имеют общего предщественника, который образуется из аспарагиновой кислоты (стр. 333). [c.429]

    Ацильная миграция была положена в основу разработки химического метода специфического расщепления пептидной цепи по амидным связям, образованным остатками серина или треонина. Методика, нашедшая применение в случае фиброина шелка, состоит в обработке белка концентрированной серной кислотой. Образующиеся в результате такой обработки аминогруппы алкилируют 2,4-динитрофторбензолом и аминокислоты определяют в виде динитрофенильных производных ([660] ср. [540а]). Этот метод применяли и для изучения других белков [1787, 2573]. Действием концентрированной серной кислоты можно почти полностью превратить поли-оь-серин в соответствующий полиэфир [708]. Однако были отмечены низкие выходы, неспеци- [c.279]

    Бензилтреонин. О-Бензил-ь-треонин получен Муразе и сотр. [1588]. Обработкой бромистым бензилом и натрием в жидком аммиаке Ы-ацетил-оь-треонин превращен в Ы-ацетил-О-бен-зил-оь-треонин, который удалось разделить на оптические антиподы с помощью такадиастазы. В литературе не имеется данных об устойчивости этого соединения или его применении в синтезе пептидов. [c.282]

    Тетрагидропиранилтреонин. Получение N-карбобензо-кси-О-тетрагидропиранил-L-треонина и его применение в синтезе М-ь-треонил-о-глюкозамина описано Джонсом и сотр. [1153]. Тетрагидропиранильную группу удаляли кипячением с 50%-ной уксусной кислотой в течение 10 мин. [c.283]


Смотреть страницы где упоминается термин Треонин применение: [c.186]    [c.231]    [c.297]    [c.471]    [c.40]    [c.52]    [c.382]    [c.401]    [c.414]    [c.280]    [c.149]    [c.280]    [c.97]    [c.280]    [c.281]   
Аминокислоты Пептиды Белки (1985) -- [ c.38 ]




ПОИСК





Смотрите так же термины и статьи:

Треонин



© 2025 chem21.info Реклама на сайте