Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюминий бромистый применение с хлористым водородом

    Для проведения реакции суспензию безводной однохлористой меди и порошкообразного хлористого алюминия в сухом толуоле механически перемешивают и через зту смесь пропускают в течение нескольких часов ток сухого хлористого водорода и окиси углерода. Реакционную смесь разлагают льдом и затем перегоняют с водяным паром полученный rt-толуиловый альдегид отделяют от непрореагировавшего толуола фракционной перегонкой. Ориентация и границы применения реакции Гаттермана—Коха приблизительно те же, что и при синтезе кетонов по Фриделю—Крафтсу, но выходы ниже. В обычных условиях этого метода (если хлористый алюминий не заменен бромистым алюминием) бензол в реакцию не вступает и даже применяется в качестве растворителя при формилировании других углеводородов. [c.375]


    Метилциклогексан при нагревании с бромистым или хлористым алюминием практически не изменяется [18]. При помощи метода меченых атомов с применением метилциклогексана, содержащего С1 -метильную группу, удалось показать, что изомеризация идет и что после реакции. 31% метилциклогексана содержал радиоактивный углерод в кольце [58]. Реакция проводилась при 25° в течение 21 часа, в качестве катализатора были взяты бромистый алюминий и бромистый водород, а в качестве инициатора цепи — вто/ -бутилбромид. В отсутствии инициатора в кольце оказалось только около 1% радиоактивного углерода. [c.46]

    При изучении влияния воды на изомеризацию н-бутана был применен вакуум [81]. Для исследования применялись два метода 1) бромистый или хлористый алюминий обрабатывали различными количествами воды, смесь нагревали и весь освободившийся бромистый или хлористый водород откачивали полученный продукт, свободный от несвязанного 2  [c.19]

    Более ранние исследования показали, что хлористый алюминий, обычно применяемый вместе с хлористым водородом, является эффективным катализатором изомеризации, что привело к важным применениям этого катализатора в промышленности. Он применялся не только сам по себе, но и на носителях, а также в виде комплексов, не смешивающихся с углеводородом, часто называемых осадком хлористого алюминия. Последующая работа с тщательно очищенными веществами показала, что инициаторы цепей, обычно присутствующие в определенных концентрациях в технических исходных материалах, необходимы для осуществления реакции изомеризации. Бромистый алюминий с бромистым водородом по своему действию напоминает хлористый алюминий с хлористым водородом. [c.14]

    Из галоидопроизводных бензола только один хлорбензол может быть превращен в п-хлорбензальдегид реакцией Гаттерман 1—Коха. Формили-рование бром- и иодбензола дает отрицательные результаты. Сам бензол формилируется окисью углерода и хлористым водородом в присутствии хлористого алюминия в очень незначительной степени, поэтому при фор-милировании гомологов бензола в качестве растворителя часто применяют бензол. Бензальдегид можно получить с хорошим выходом при применении в качестве катализатора бромистого алюминия вместо хлористого алюминия. [c.298]

    Далее, хотя данные в табл. 1 указывают на то, что галоидоводород промотирует изомеризацию с применением бромистого алюминия, последующая работа с тщательно очищенными реагентами показала, что изомеризация к-бутана не происходит при умеренных температурах как в присутствии пары бромистый алюминий — бромистый водород, так и в присутствии пары хлористый алюминий — хлористый водород. Добавление ничтожного количества олефина вызывало изомеризацию 218]. Это явление иллюстрируется данными табл. 2 и 3. [c.57]


    На молекулярный вес полимера влияют и регуляторы — ускорители или замедлители процесса. Как, правило, ускорители добавляют к реакционной смеси в небольших количествах — от 0,001 ДО 1%. При применении хлористого алюминия в качестве регулятора вводят хлористый водород, при применении бромистого алюминия — бромистый водород. [c.81]

    Бромирование циклопропана было предметом исследований многих авторов, особенно Густавсона. В присутствии солнечного света происходит очень быстрое соединение брома с циклопропаном (находящихся в сухом или влажном состоя-ши) с образованием в качестве единственного продукта 1,3-дибр 0 мпропана Бромирование при комнатной тем пературе и в темноте совершенно сухого циклопропана протекает очень медленно, но реакция заметно ускоряется присутствием влаги или некоторых переносчиков брома к числу последних относятся галоидные соединения алюминия, хлорное >келеэо, хлористый цинк элементарный иод. В присутствии бромистого водорода, который может также действовать как катализатор бромирования, в результате реакции получаются 1,3- и 1,2-дибромпро-паны и продукты их дальнейшего бромирования, а также некоторое количество пропилбромида при применении в качестве катализаторов бромистого алюминия или хлорного железа основным нродуктом является 1,2-дибромпропан Отсюда видно, что главной реакцией, происходящей ери действии брома на циклопропан, является расщепление кольца из трех атомов углерода с после-, дующим бром ированием временно образующейся ненасыщенной системы. [c.810]

    Исследовалась изомеризация н-бутана с катализаторами хлористый алюминий—хлористый водород и бромистый алюминий —бромистый водород, при применении техники глубокого вакуума. [c.51]

    Влияние олефинов. Проведено изучение [7] изомеризации н-бутана с реагентами высокой степени очистки и с применением высокого вакуума для загрузки и разгрузки продуктов. Оказалось, что изомеризация н-бутана в относительно мягких условиях при катализе либо хлористым алюминием с хлористым водородом, либо бромистым алюминием с бромистым водородом не идет. Чтобы вызвать такую изомеризацию, необходимо добавлять различные вещества, обычно присутствующие в качестве загрязнений при изомеризации технического бутана в присутствии хлористого алюминия с хлористым водородом при 100° оказалось достаточным добавить к н-бутану 0,01% бутенов. В отсутствие олефинов хлористый алюминий с хлористым водородом не вызывал изомеризации н-бутана, несмотря на то, что условия опыта благоприятствовали образованию продуктов разложения. Реакцию удавалось осуществить или путем повышения температуры, или увеличением количества хлористого водорода. Полученные данные расходились с результатами описанных ранее опытов [5], [c.7]

    При нагревании с хлористым алюминием бромбензола можно также наблюдать миграцию [32]. При этом процессе имеют место и конденсация и пирогенетическое разложение с выделением угля и образованием бром-производных нафталина, антрацена и т. д. Миграция брома может пройти на 83%, если образующийся бензол все время выводится из сферы реакции путем пропускания тока хлористого водорода или водорода. Прибавление фенола вызывает миграцию, но при отом процесс осложняется побочными реакциями. Поскольку хлористый алюминий не оказывает подобного действия на хлорбензол, а бромистый алюминий—на бромбензол, то авторы считают, что во избежание побочных реакций при конденсации по Фриделю—Крафтсу с применением галоидзамещенных бепзола в случае хлорпроизводных следует применять именно хлористый алюминий. [c.693]

    Полимеризация винилалкиловых эфиров протекает под влиянием кислых катализаторов (хлористый водород, бромистый водород, галоиды, хлорное железо, хлористый алюминий, фтористый бор, хлорное олово) и приводит к образованию высокомолекулярных продуктов самой различной консистенции (от жидких маслянистых до твердых полимеров). Полимеры виниловых эфиров имеют широкое применение во многих отраслях народного хозяйства. [c.62]

    Реакция изомеризации предельных углеводородов принадлежит к числу низкотемпературных реакций. В табл. 33 помещены данные по изменению свободной энергии при изомерных превращениях к-бутана и к-пентана, а в табл. 34 — вычисленные по этим данным равновесные концентрации изомеров. Приведенные цифры позволяют сделать вывод о том, что для превращения к-бутана желательна температура не выше 100°, к-пентана — от 100 до 150° и изопентана — ниже 100°. Скорость изомеризации при этих температурах настолько незначительна, что необходимо применение активных катализаторов. К числу их можно отнести хлористый и бромистый алюминий, фтористый водород и некоторые другие. Практическое применение получил хлористый алюминий, который позволяет осуществить процесс изомеризации к-бутана и к-пентана при 100—150° с удовлетворительной скоростью. Однако превращение изопентана в неопентан в этих условиях не наблюдается. [c.303]


    Исследовались каталитические свойства многочисленных сильных кислот фтористого водорода, фтористого бора, галоидсульфоновых кислот, этансульфоновой кислоты и др. Однако ббльшая часть экспериментальных данных, используемых для выяснения механизма изомеризации насыщенных углеводородов, была получена с применением хлористого и бромистого алюминия, серной кислоты и алюмосиликатов. Поэтому рассмотрение реакций изомеризации, катализируемых сильными кислотами, будет ограничено реакциями, протекающими на перечисленных четырех катализаторах. По тем же причинам обсуждение изомеризации в присутствии гидрирующих катализаторов на кислотных носителях будет ограничено реакциями, протекающими в присутствии платины на содержащей галоид окиси алюминия, никеля на алюмосиликатах и алюмомолйбденового катализатора. [c.88]

    Изомеризация с кислыми галогенидами. Необходимость промоторов. При обычном приготовлении и применении хлористый и бромистый алюминий являются катализаторами для изомеризации насыщенных углеводородов однако было установлено, что эти соли неэффективны в отсутствии промоторов или инициаторов. Например, чистый бромистый алюминий не действует на к-бутан [134, 218] даже при температуре до 84° [99] и в отсутствии влаги он не действует на к-гексан [87], к-гентан [87], метилциклопентан [265], циклогексан [265] и щшлопентан (217]. Чистый безводный хлористый алюминий не действует на к-бутан [218], к-пентан [78, 219], н-гексан [110], к-гептан [110], 2,2-диметилбутан [129] и 2,2,4-триметилпентан [110] при умеренных температурах. Далее, к-бутан не изомеризуется катализатором фтористый бор — фтористый водород при 50° до тех пор, пока в нем не будут содержаться следы олефина. Поэтому можно заключить, что некоторые вещества, присутствующие иногда в качестве примесей, играют значительную роль при катализе кислотными галогенидами. [c.54]

    Реакции обмена галоида изучались также без применения радиоактивных частиц. В 1944 г. Коршак и Колесников [1011 провели реакцию между бромистым алюминием и С2Н5СО2С1. Выделившиеся в ходе реакции газы содержали 82% бромистого водорода и 18% хлористого водорода. Дельволль [32] в течение ряда лет изучал реакции галоидного обмена между галоидными соединениями германия, олова, титана и кремния. Найдено, например, что ОеС1 и ОеВг4 обмениваются галоидом при 20—60° и что этот обмен катализируется следами хлористого водорода или бромистого водорода. [c.348]

    Нагревание 1,2,4-три-н-пропилбензола с эквимолекулярными количествами хлористого алюминия и хлористого водорода (40°, 8 ч) приводит к образованию 1,3,5-три-н-пропилбензола, содержание которого во фракции трипропилбензолов достигает при этом 94% [24] (см. также [43, 45]). При применении меньших количеств хлористого алюминия, а также при использовании эквимолекулярного количества хлористого-алюминия, но в отсутствие хлористого водорода достигнуть столь высокой степени превращения 1,2,4-изомера не удается даже при более высокой температуре. Причина влия-лия количества катализатора на конечный состав продуктов изомеризации рассмотрена выше на примере изомерных превращений ксилолов в присутствии бромистого алюминия. [c.12]

    Получение бензальдегида по этому методу впервые было осуществлено в 1901 году А. Н. Реформатским , который использовал в этой реакции вместо нерастворимого в бензоле хлористого алюминия растворимую бромистую соль алюминия. Бензойный альдегид получается по методу А. Н. Реформатского пропусканием окиси углерода и хлористого водорода через бензол, содержащий свежеприготовленный АШгд и СиС1. Выход чистого бензальдегида достигает 85—90% ог теоретического (описание методики см. на стр. 293). Несколькими годами позже Гаттерман, отмечая невозможность получения бензальдегида в присутствии хлористого алюминия, также указывал на легкое образование его в присутствии бромистого алюминия (по экспериментальным данным Смирнова) . Однако Гаттерман не указывает, что синтез бензальдегида из бензола в присутствии бромистого алюминия был уже опубликован А. Н. Реформатским. Впоследствии было показано, что бензальдегид может быть получен с применением хлористого алюминия в качестве катализатора при атмосферном давлении, если проводить реакцию в 1гитробензолы ом растворе.  [c.279]

    При выборе ингибиторов очень важно знать, какие вещества, содержащиеся в данной среде, могут вызывать кор -розию металлов,, которые подвергаются воздействию этой среды. Довольно часто агрессивные по отношению к металлам вещества отсутствуют в исходной жидкости и образуются в ней лишь в процессе работы, В таких случаях весьма целесообразно применение добавок, препятствующих образе-ванию в данной среде агрессивных веществ . Так, в жидкое топливо и смазочные масла в качестве замедлителей коррозии вводят антиоксидант ы—вещества, препятствующие окислению этих продуктов кислородом воздуха ири их применении и хранении. В хлорорганических (или броморганнческих) соединениях и в углеводородных растворах AI I3 коррозия вызывается образующимся в них хлористым (или бромистым) водородом. Для защиты металлов здесь можно использовать вещества, дающие стойкие соединения с НС (или НВг). Например коррозию алюминии в среде хлористого метила СН,С1 можно предотвратить путем введения аминов . В маслах коррозия металла вызывает-1 я иногда небольшими примесями воды, в этих случаях в качестве ингибиторов применяются мыла, образуюище с водой молекулярные соединения. [c.167]

    Позднее было установлено, что кроме ацетона реагируют с фенолом с образованием 4,4 -диоксидифенилалканов и другие кетоны и альдегиды. Было найдено, что наилучшие выходы получаются при мольном соотношении ацетон фенол, равном 1 3,7 [399]. При применении серной кислоты в качестве катализатора ее концентрация в растворе не должна превышать 75%, чтобы предотвратить образование водорастворимого сульфированного продукта. Температура реакции не должна превышать 80°С [399, 400]. Кроме того, в качестве катализаторов реакции применяют хлористый, бромистый и фтористый водород, фосген [401], фтористый бор, хлористый алюминий, галоидные соединения фосфора, фосфорный ангидрид, фосфорную кислоту, концентрированную соляную кислоту, серную кислоту, смеси уксусной кислоты с уксусным ангидридом, соляной или серной кислотой и катионообменные смолы. В присутствии кислых катализаторов, которые не являются одновременно дегидратирующими веществами, высокий выход продуктов достигается лишь в том случае, если воду удаляют какими-либо другими способами, например, азеотропной перегонкой с растворителями или взаимодействием с хлористым кальцием или фосфорным ангидридом. [c.128]

    Технологическому процессу как в жидкой, так ив газовой фазе посвящено много патентов. Катализатором его является безводный хлористый алюминий в присутствии сухого хлористого водорода [232—235], смесь фтористого бора и безводного фтористого водорода [236, 237], и наконец бромистый алюминий. Применение последнего соединения хотя и ведет к высоким выходам изобутана (78—82%), но превращенне происходит весьма медленно [238]. В промышленности изомеризацию в жидкой фазе проводят приблизительно следующим образом сжиженный н-бутан смешивают с определенным количеством хлористого алюминия и суспензию подают в реактор, заполненный кусками инертной насадки, например размельченным кварцем. В реакторе поддерживают давление 10—35 атм и температуру 50—150°. Тедгаература онределяется количеством катализатора и хлористого водорода. Одновременно в реактор подают жидкий и-бутап, в котором растворено определенное количество безводного хлористого водорода. Обе жидкости стекают но насадке и смешиваются прн этом образуется комплекс хлористого алюминия с углеводородом, в результате чего и происходит изомеризация. Смесь углеводородов пз реактора подают в аппарат, где она освобождается от растворенного в ней хлористого алюминия, а затем дистилляцией под давлением смесь освобождают от хлористого водорода, который снова подают в реактор. От оставшихся следов хлористого водорода смесь освобояедают промыванием ее водным раствором щелочи. Катализатор выводится из реактора автоматически через определенные промежутки времени и регенерируется. Второй стадией производственного процесса является каталитическое гидрирование с образованием изобутилена. Получающийся на стадии изомеризации продукт дегидрируют либо непосредственно, либо с целью очистки подвергают его предварительной ректификации. [c.52]

    В повздении некоторых парафинов в присутствии серной кислоты наблюдается положение, несколько напоминающее случай с неопентаном. Изомеризация при помощи серной кислоты подробно обсуждается ниже. Здесь достаточно сказать, что серная кислота особенно в мягких условиях склонна катализировать только такие реакции изомеризации, которые можно рассматривать как внутримолекулярный переход водорода между третичными атомами углерода, исключая вторичные и первичные атомы. Образование продуктов, получающихся при применении в качестве катализаторов хлористого или бромистого алюминия, можно удовлетворительно объяснить внутримолекулярным переходом водорода между третичными и вторичными, но не первичными атомами углерода. Приведем пример. В присутствии серной кислоты легко устанавливается равновесие между 2- и 3-метилпентанами, причем 2,2-диметилбутан отсутствует, хотя термодинамически он является более выгодным изомером и преобладает, когда равновесие устанавливается на хлористом алюминии как катализаторе. [c.26]

    Изомеризация парафинов. Главное практическое применение реакции изомеризации парафинов получили в нефтяной промышленности для превра-ш.ения нормального бутана в изобутан, а также для изомеризации пентановой и гексановой фракций в продукты с высоким содержанием изомеров с разветвленной цепью. Хотя сами по себе эти практические применения реакций изомеризации не представляют особого интереса для химика-органика, однако с.иедует отметить, что эти реакции протекают обратимо по уравнению первого порядка и в интервале от низких до умеренных температур (20—150°) приводят к образованию более разветвленных и более компактных молекул. Катализирующий эти превращения хлористый алюминий можно наносить на боксит или другие носители. Его можно также применять в виде илистого шлама или в растворе плавленой треххлористой сурьмы для проведения процесса в жидкой фазе. В качестве катализаторов применяют также бромистый алюминий, фтористый бор в сочетании с фтористым водородом [471] и серную кислоту. [c.162]

    Взаимодействие очень активных олефинов с бензолом можно вызвать не только действием хлористого алюминия, но и кислот (концентрированной серной, фтористого водорода, фосфорной). Как видно из приведенных примеров, несимметрично построенные олефины вводят Б бензол вторичные или третичные алкильные радикалы. Первичные радикалы, кроме метила и этила, таким путем ввести нельзя. По существу вариант реакции Фриделя — Крафтса с олефинами можно рассматривать как присоединение бензола к олефинам, проходящее в соответствии с правилом Марковникова (водород бензола присоединяется к более гидрогенизированному олефиновому углероду, а фенильный радикал — к его партнеру). Вполне возможно применение бромистого алюминия и бромистых алкилов. Кроме галоидного алюминия катализаторами реакции Фриделя — Крафтса могут служить в порядке ослабевающего действия ВРз (только для фтористых алкилов), Ga U, Sn U, Fe l . С их помощью алкилируются только ароматические соединения, более нуклеофильные, чем бензол. Для алкилирования олефинами предпочитают применять в качестве катализатора фосфорную кислоту. [c.32]


Смотреть страницы где упоминается термин Алюминий бромистый применение с хлористым водородом: [c.434]    [c.476]    [c.132]   
Безводный хлористый алюминий в органической химии (1949) -- [ c.856 ]




ПОИСК





Смотрите так же термины и статьи:

Алюминий бромистый

Алюминий бромистый и хлористый

Алюминий применение

Бромистый водород

Водород применение

Хлористый водород

Хлористый и бромистый водород



© 2025 chem21.info Реклама на сайте