Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионизация в масс-спектрометрии электронным ударом

    Достоинства метода ионизации сложных смесей фотонами при энергии 10,2 эВ рассмотрены в работе [199]. Эти же авторы применили фотоионизационную масс-спектрометрию по методике молекулярных ионов для анализа высоко- и низкокипящих фракций нефти [189]. Такая техника близка к низковольтной масс-спектрометрии электронного удара, но благодаря изменению характера физического взаимодействия с веществом при переходе от электронов к фотонам и сохранении интенсивного пика молекулярных ионов, повышается доля наиболее энергетически выгодных (обычно наиболее ценных для структурного анализа) первичных процессов фрагментации. Ионизация фотонами в сочетании с химической ионизацией [200] была применена для получения отпечатка пальцев и частичного количественного анализа смесей аренов и алканов. [c.135]


    На сегодняшний день самым распространенным масс-спектрометром является квадрупольный фильтр масс, оборудованный устройством для ионизации электронным ударом и снабженный электронным умножителем этот [c.259]

    Среди многих применяемых в масс-спектрометрии способов ионизации наиболее распространенным является ионизация электронным ударом. Этот способ универсален, прост в исполнении и позволяет получать многолинейчатые масс-спектры, содержащие большой объем структурной информации. В большинстве промышленных масс-спектрометров применяется именно этот способ ионизации. Поэтому в данной книге масс-спектрометрии электронного удара уделено основное внимание. Рассмотрены также и другие методы ионизации. [c.4]

    Методы ионизации, используемые в аналитической масс-спектрометрии, можно классифицировать на различной основе (см. табл. 9.4-3). Важное значение имеет деление на методы мягкой и жесткой ионизации. При жесткой ионизации молекулам аналита предается значительное количество энергии, что с большой вероятностью приводит к реакциям мономолекулярной диссоциации. Ионизация электронным ударом, как уже обсуждалось ранее, является типичным примером жесткой ионизации. Большинство других способов относятся к мягкой ионизации. Обычно они приводят к незначительной фрагментации, и таким образом можно получить информацию о молекулярной массе. Классификация методов мягкой ионизации может основываться на способах ввода вещества, хотя некоторые комбинированные способы могут не укладываться в четкие рамки такой классификации. Наиболее важные методы мягкой ионизации будут подробно обсуждены в последующих разделах. [c.266]

    Развитие и совершенствование хромато-масс-спектрометрии резко изменило ситуацию. Однако обрабатывать большое количество данных, получаемых с помощью масс-спектрометрии, электронного удара или химической ионизации, аналитик может только с помощью компьютера. В последние два десятилетия были созданы различные компьютерные методы, позволяющие определять формулу соединения по его масс-спектру. Но этой формулы не всегда достаточно для идентификации и распознавания соединений, имеющих сходные масс-спектры, требуются дополнительные данные, такие, например, как индексы Ковача. [c.271]

    Из многочисленных способов ионизации органических соединений, известных в настоящее время, только три оказываются наиболее пригодными для хромато-масс-спектрометров электронный удар, химическая и полевая ионизация [12]. В серийных приборах получили широкое распространение двойные источники ионов с ионизацией первых двух типов. [c.81]


    Хотя масс-спектрометрию электронного удара применяют в. большинстве исследований углеводов, масс-спектры химической ионизации, полученные в присутствии таких ионизирующих газов, как аммиак, метан или изобутан, зачастую легче интерпретировать [370] и можно использовать для идентификации соединений, которые имеют сложный характер фрагментации под электронным ударом [374]. Поэтому наиболее полную информацию можно, очевидно, получить при помощи обоих этих методов взаимно дополняющих друг друга. [c.60]

    Ионизация под действием электронного удара (ЭУ) наиболее часто применяется в современных масс-спектрометрах. В настоящей главе рассматриваются устройство ионного источника и основные параметры, определяющие характер масс-спектра. [c.18]

    Химическая ионизация. В ионизационную камеру маес-спектрометра вводится газ-реагент при давлении 1 мм. После первичной ионизации этого газа электронами с энергией 50— 70 эВ образовавшиеся из него осколочные ионы реагируют с нейтральными молекулами газа-реагента, образуя вторичные ионы, которые уже не реагируют с исходным газом. В ту же камеру вводится анализируемое вещество при давлении 10 мм. Стабильные ионы газа-реагента взаимодействуют с парами образца, давая масс-спектр ионов, характерных для последнего. Полученные масс-спектры химической ионизации в сильной степени отличаются от масс-спектров электронного удара, а именно интенсивности пиков осколочных ионов невелики основной первичный процесс ионизации при взаимодействии с ионами газа-реагента состоит в образовании иона [МЧ-Н] . Так, при использовании СН4 в качестве рабочего газа образуется 90% ионов СНз и СгН . СНз" является сильной кислотой, и взаимодействуя с образцом, дает ион [M-fH]+, который далее распадается на несколько осколков  [c.255]

    Образовавшиеся ионы ускоряются при прохождении через отрицательно заряженные щелевые диафрагмы 6 по направлению к масс-анализатору. Неионизированные молекулы, как и незаряженные осколки, при помощи диффузионного насоса 8 выводятся из масс-спектрометра. Наряду с ионизацией электронным ударом иногда используют также другие методы получения ионов. При осуществлении фотоионизации необходимая энергия поставляется ультрафиолетовым излучением. Для этого требуется излучение с длиной волны 150—80 нм (вакуумная ультрафиолетовая область), соответствующее ионизационному потенциалу 8—15 эВ. При ионизации полем используют сильное электрическое поле, способное оторвать электроны от молекул вещества пробы. В обоих методах ионизации происходит мягкая ионизация, так как подводимая энергия лишь немного превышает потенциал ионизации и, таким образом, едва разрывает связи в молекулярном ионе . Поэтому спектры, получаемые при фотоионизации и ионизации по- [c.286]

    Масс-спектры состоят из линий, обусловленных осколками молекул эти осколки возникают в результате разрыва молекулы под действием электронного удара. Затем ионизированные осколки и ионы молекул ускоряются в магнитном поле в разной степени в зависимости от величины М е М — масса иона в атомных единицах е — заряд иона в единицах заряда электрона) и таким образом могут быть разделены. Ионизация происходит в ионном источнике масс-спектрометра, большей частью путем бомбардировки электронами. Ионные токи, обусловленные каждым видом ионов, усиливаются и регистрируются и являются мерой вероятности, с которой возникает данный осколок. Положение линий на шкале масс и относительные частоты ионов являются одинаково важными характеристиками масс-спектра данного соединения. Частоту наиболее интенсивной линии в спектре считают равной ста и относят частоты всех других ионов к этой линии (относительный спектр). Различные функциональные группы соединений обусловливают, как правило, различные масс-спектры, которые можно предсказать заранее. Относительный спектр при обычных условиях большей частью хорошо воспроизводится и характеризует данное вещество. Часто масс-спектры изомеров различаются между собой по относительной интенсивности линий, и это обстоятельство достаточно для однозначной идентификации изомеров даже в тех случаях, когда они имеют одинаковые массовые числа, как это большей частью бывает. [c.265]

    Отработка методики проводилась на масс-спектрометре МИ-1201. Исследуемое вещество прямым вводом помещалось рядом с ионизационной камерой. Проникнув в область нагрева (400-430"С, в вакууме), проба испарялась и в газообразном состоянии попадала через диафрагму в ионный источник, где под воздействием электронного удара ионизировалась. Энергия электронов составляла 70 эВ. Образовавшиеся положительно заряженные ионы вытягивались из зоны ионизации и ускорялись в электронной оптической системе. При входе в магнитное поле происходило разделение по массам, и ионы приобретали энергию порядка 200 эВ. На шлейфовом осциллографе осуществлялось сканирование магнитного или электрического напряжения, и последовательно регистрировались ионы различных масс. [c.149]


    Для получения иоиов в масс-спектрометрах наиболее часто используется ионизация посредством электронного удара или химическая ионизация. До настоящего времени большинство масс-спектров получали с использованием ионизации электронным ударом. На рис. 5-10 представлена схема ионного источника электронного удара. Современные библиотеки масс-спектров содержат более 120 ООО спектров, полученных с ионизацией электронным ударом. Самой обширной библиотекой данных является коллекция масс-спектров ЕРА/МН, которая используется для сопоставления и идентификации спектров при анализе лекарственных средств и объектов окружающей среды [15]. [c.84]

    Для анализа продуктов нефти может быть использовано ценное свойство масс-спектров полевой ионизации-—их малолинейча-тость и обязательное присутствие интенсивного пика молекулярного иона. Отсюда появляется хорошая возможность применения молекулярных ионов [193, 194]. В рассматриваемых работах проведено сравнение метода полевой ионизации с низковольтной масс-спектрометрией электронного удара [193] и с методом характеристических сумм [194]. Метод полевой ионизации был применен для количественного анализа легких бензиновых фракций [195] и тяжелых нефтяных фракций с температурой кипения 300—350°С и молекулярной массой до 700 [196]. К сожалению, из-за повышенной и сильно зависящей от условий съемки интенсивности пика [М -f Н]+ (взаимодействие с парами остаточной воды, катализ) затруднено использование пиков изотопных ионов. [c.135]

    Для анализа продуктов нефти используют ценное свойство масс-спектров полевой ионизации их малолинейчатость и обязательное присутствие интенсивного пика молекулярного иона. Отсюда появляется хорошая возможность применения молекулярных ионов. Проведено сравнение метода полевой ионизации с низковольтной масс-спектрометрией электронного удара и с методом характеристических сумм. Метод полевой ионизации применяется для количественного анализа легких бензиновых фракций и тяжелых нефтяных фракций с температурой кипения 300-350 °С и мо- [c.77]

    Эксперименты со скрещенными пучками дают наиб, полную информацию о взаимод. между частицами, в т. ч. о хнм. р-циях, позволяя проследить траектории рассеянных частнц нли продуктов р-ции. Этого достигают тем, что сначала определяют скорости, углы взаимод. и др. исходные состояния пучков реагентов, а затем измеряют распределение рассеянных частиц, в т. ч. продуктов, по скоростям, внутр. степеням свободы, углам рассеяния. Установка со схрещен-ньп (и пучками состоит из неск. вакуумных камер с дифференц. откачкой, источников мол. пучков (однн из к-рых, как правило, газодинамический), мех. модуляторов пучков, детектора, разл. селекторов для выделения частнц с энергиями в заданном интервале значений, систем управления экспериментом, сбора и обработки данных. Распределения рассеянных частиц по скоростям обычно определяют времяпролет-ным методо.м. при к-ром измеряют времена прохождения частицами известного расстояния. Применяют разл. детекторы масс-спектрометры с ионизацией электронным ударом или лазерным излучением с поверхностной ионизацией манометрич. микровесы полупроводниковые лазерные (основанные на лазерно-индуцир. флуоресценции). [c.123]

    Важной характеристикой значимости количественного метода является предел обнаружения или нижняя граница определяемых содержаний. Для ГХ-МС достигнуты величины порядка 1 пг/с (масс-спектрометр является детектором, чувствительным к потоку массы). Современные квадрупольные масс-спектрометры обеспечивают, например, ГХ-МС-определение (с отношением сигнал/шум, равным 30) 200 пг метилстеарата в случае ионизации электронным ударом и 100 пг бензофенона в случае химической ионизации. Приборы с двойной фокусировкой имеют характеристики, обеспечивающие отношения сигнал/шум, равные 200 при ГХ-МС-определении массы метилстеарата 100 пг как для химической ионизации, так и для ионизации электронным ударом и определение 30 фг 2,3,7,8-ДБДД с отношением сигнал/шум не менее 10. Однако, если вспомнить о химических процессах, сопровождающих ионизацию в случае электронного удара и особенно в методах мягкой ионизации, становится ясно, что отклик детектора весьма значительно зависит от исследуемого соединения. Более того, приведенные числа дают мало представления о том, каких пределов обнаружения можно ожидать в реальном случае. В случае анализа реальных образцов пределы обнаружения прежде всего определяются так называемым химическим шумом, а не электронными шумами детектора и цепи усилителя. Успех применения метода в анализе реальных образцов полностью зависит от одновременной и совместной настройки различных его составляющих пробоподготовки и разделения образца, ионизации, масс-спектрометрического анализа, детектирования и обработки данных. Кроме того, в такой ситуации более важны концентрационные (относительные), а не абсолютные пределы обнаружения. [c.299]

    Здесь же отметим, что исследования ионно-молекулярных реакций нашли также применение для измерения термохимических величин, например, для измерения сродства молекул к протону [341], к электрону [763], а также в аналитической масс-спектроскопии в методе так называемой химической ионизации [758, 769, 770]. В этом методе регистрируется масс-спектр, получаемый нри реакции ионов (например, СН5, образуемых при ионно-молекулярных реакциях в СН4) с анализируемыми молекулами. Получаемый масс-спектр оказывается малолинейчатым по сравнению с масс-спектром электронного удара, что сильно упрощает анализ и расширяет аналитические возможности масс-спектрометрии. [c.379]

    Применение в органическом анализе масс-спектрометрии с химической ионизацией обусловлено ее высокой чувствительностью и селективным образованием квазимолекулярных ионов, обеспечивающих возможность определения молекулярной массы исследуемого соединения. Ионизация осуществляется в ионномолекулярных реакциях молекул анализируемого образца с так называемыми ионами-реагентами, образующимися при взаимодействии ионов, получающихся в результате ионизации реагентного газа электронным ударом, с молекулами того же газа при повышенном 10—100 Па) давлении в ионном источнике масс-спектрометра. Ионы, образующиеся в результате электронной бомбардировки молекул газа реагента, носят название первичных, а получающиеся в ионномолекулярных реакциях первичных ионов с нейтральными молекулами газа реагента называются вторичными ионами [1, 2]. [c.126]

    Е 23. Stevenson D. P., Н i р р 1 е J. А. Ионизация и диссоциация электронным ударом нормальный пропилхлорид, третичный бутилхлорид, изобутилен, пропан и пропилеи. (Использование масс-спектрометра.) J. Ат. hem., So ., 64, 2766-2772 (1942). [c.652]

    ГИИ. При Ее = 70 в интенсивности всех ионов относительно интенсивности СПзТ+ увеличиваются. При этом появляются все ионы, ожидаемые из структурной формулы СНз1, в том числе и двухзарядные. Как известно, при такой энергии электронов обычно и проводятся все масс-спектрометрические анализы веществ. Дальнейшее увеличение энергии электронов приводит к еще большему увеличению интенсивностей всех линий. Аналогичное увеличение интенсивностей осколочных ионов при изменении Ее от 50 до 120 в было отмечено в работах [8, 3]. В работе [8] рассмотрена диссоциация ЗГв,, и 81Р4 в масс-спектрометре при ударе электронов и показано, что с ростом энергии электронов от 50 до 100 в происходит соответствующее увеличение интенсивностей всех ионов, в том числе и молекулярных. Возрастание пиков легко понять, если учесть, что почти для всех веществ максимум ионизации наблюдается в пределах Е = 90 — —150 в. [c.234]

    Современные хромато-масс-спектрометры позволяют переходить от регистрации масс-спектров электронного удара к химической ионизации в течение 2—3 с, т. е. записать два различных спектра даже для одного хроматографического пика. В некоторых приборах (LKB-2091, Varian МАТ 44S ) предусмотрена возможность детектировать отрицательные ионы М " в режиме химической ионизации. Такие ионы получаются при захвате молекулами органических соединений тепловых электронов, возникающих вследствие торможения первоначального электронного пучка в источнике ионов молекулами газа-реактанта. Полученные в настоящее время данные еще не позволяют судить о закономерностях поведения различных соединений в условиях подобной ионизации, однако сообщалось, что некоторые азотсодержащие вещества при этом могут детектироваться в количествах до 10 г [18]. По-видимому, этот метод найдет широкое применение при анализе следовых количеств органических соединений. [c.82]

    Существенное отличие ионизации молекул от ионизации атомов ударом электрона состоит в том, что, наряду с образованием однозарядных или многозарядных молекулярных ионов, при ионизации молекул возможно расщепление их на те или иные осколки. Большой экспериментальный материал но масс-спектрометрии представляет особый интерес для радиационной химии, так как масс-снот.тр отралгяет вероятности образования различных ос- [c.185]

    Сущность масс-спектрометрии состоит в том, что под действием электронного удара происходит диссоцггативная ионизация молекул органических соединений с образованием набора регистрируемых осколков, характеризующих гсходные молекулы. Процесс протекает при глубоком вакууме, исключающем соударения молекул, которые могли бы отразиться иа масс-спектрах. Ионизация молекул, т. е. отрыв валентных электронов и образование молекулярного иона, происходит при столкновении с электронами, имеющими энергию несколько выше порога ионизации (10— [c.93]

    Масс-спектры, получаемые при отрицательной химической ионизации, более просты, чем при ионизации электронным ударом. Кроме того, обраювание отрицательных ионов позволяет повысить чувствит( льность детектирования соединений с высоким сродством к электрону по сравнению с масс-спектрометрией положительных ионов в 1(1-100 раз, причем линейная зависимость величины сигнала от количества вещества сохра 264 [c.264]

    Имеется много примеров по гфименению хромато-масс-спектрометрии для анализа других суперэкотоксикантов. Так, N-нитрозамины определяют этим методом в количествах порядка нескольких пикофам-моБ 49,50 . В литературе приведены многочисленные методики определения остаточных количеств ХОП методом ГХ-МС в почве и биоте Основной проблемой анализа соединений типа ДДГ является их разложение или превращение при ионизации электронным ударом с регистрацией положительных ионов, причем превращения типа /]ДТ ДДЭ и ДДТ ДДД наблюдались как в масс-спектромефе, так и в хроматофа-фической колонке (511 Химическая ионизация позволяет исключить нежелательные явления. В качестве газа-реагента обычно используют изобутан [c.269]

    Всестороннее освещение различных способов ионизащ1и можно найти в разд. 9.4. Хотя допустимы различные способы ионизации, наиболее частыми для общего применения в газовой хромато-масс-спектрометрии являются электронный удар и химическая ионизация. Из этих двух способов ионизация электронным ударом является в настоящее время наиболее широко используемым способом ионизации (более 90% всего применения). Ниже обсуждаются причины этого. [c.601]

    В масс-спектрометрии чаще всего используется метод электронного удара. Процессы диссоциативной ионизации, протекающие в масс-спектрометре, приводят к образованию набора осколков, характеризующих псходную молекулу. Регистрация образующихся положительных ионов позволяет в очень короткое время получить картину, создание которой ранее требовало колоссальной и кропотливой работы. Изучение вещества методом разложения его па составные части с последующей идентификацией этих частей — путь, хорошо [c.3]

    Авторы исследовали па модифицированном масс-спектрометре МС-1 кривые эффективности ионизации а-метил-, а-этил-, а-пропил- и а-гексилтиофана [198, 199]. Вероятности образования их молекулярных ионов характеризуется весьма близкими величинами в области энергий электронов 12— 30 эв. Это позволяет предположить, что обн1еи основой для образования молекулярных ионов ос-алкилтиофаиов является удаление электрона из неподеленнои пары атома S. Отсутствие двойных связей и я-электронов в молекуле тиофанов исключает возможность образования сопряженной системы с неподеленнои парой, что делает молекулу недостаточно устойчивой к электронному удару и обусловливает ее преимущественный распад по -углерод-углеродной связи по отношению к атому серы с образованием ионов ( 4H7S)+. Аналогичная форма кривых появления этих ионов (рис. 45) является наглядным подтверждением обш,ности механизма их образования при диссоциативной ионизации а-алкилтио-фанов. [c.185]

    Ионный ИСТОЧНИК, в ионном источнике молекулы ионизируются, а образовавшиеся ионы ускоряются и формируются в ионный пучок. В случае органических соединений особое значение имеет ионизация методом электронного удара. Схема компоновки ионного источника и устройства для ионизации электронным ударом с другими узлами масс-спектрометра показана на рис. 5.37. Электроны испускаются раскаленным катодом 3. По пути к аноду 4 они сталкиваются с молекулами исследуемого газообразнога вещества, которые через дюзы натекателя 2 непрерывно подаются в ионный источник 5. Поскольку налетающие электроны обладают определенным минимумом энергии (см. стр. 275), молекулы ионизируются и распадаются на осколки. Обычно работают при энергии электронов около 70 эВ, потому [c.286]

    В газовой фазе И. р. образуются при электронном ударе, диссоциативной ионизации (см. Масс-спектрометрия), а также в условиях ион-циклотронного резонанса. Для жидкой фазы общий метод-электрохим. окисление или восстановление. АР получают также р-цией субстратов с сольватиро-ванным электроном или донорами электроноа, в качестве к-рых используют щелочные и щел.-зем. металлы, др. орг. АР, орг. анионы и нек-рые соед. с низким потенциалом [c.266]

    Разряды низкого давления используют в качестве ионных источников в МС для проводящих твердых проб благодаря их простоте и эффективной ионизации. Их широко применяли до внедрения искрового источника. Вслед за использованием тлеющего разряда в атомно-эмиссионной спектрометрии, где наблюдали интенсивное испускание ионов, в начале 1970-х вновь возник интерес к применению этого источника в МС [8.5-9-8.5-13]. Масс-спектрометрия с тлеющим разрядом (ТРМС) имеет ряд уникальных характеристик, что можно видеть и в атомно-эмиссионной спектрометрии (разд. 8.1). Пробоподготовка сведена к минимуму, ТР работает при пониженном давлении (0,1-10 мм рт. ст.), атомизация происходит за счет распыления поверхности, а ионизация — главным образом за счет электронного удара и пеннинговской ионизации из метастабильных уровней инертного газа —сосредоточена в области свечения (рис. 8.5-2). Разрядный газ — это обычно аргон высокой чистоты, но аргон можно заменить другим инертным газом, например Ne. Интерфейс с МС располагают очень близко к области свечения, чтобы избежать захвата молекулярных ионов. Подобно ИСП-МС используют двухступенчатую дифференциальную систему откачки. Требуется также ионная оптика, особенно для уменьшения разброса энергии ионов. Настройка ионной оптики имеет решающее значение для экстракции и прохождения ионов. Параметры ТР, используемые для оптимизации ионизации, включают природу и давление газа, напряжение и ток разряда. В некоторых последних модификациях ячейку охлаждают жидким [c.137]

    В то время как поиск в компьютерных базах данных в случае масс-спектрометрии с ионизацией электронным ударом является достаточно мощным средством благодаря как временной ( день ото дня ), так и межлабора-торной ( от прибора к прибору ) воспроизводимости спектров электронного удара, ситуация в случае методов мягкой ионизации и десорбционной химической ионизации совершенно противоположна. В этих случаях масс-спектры настолько сильно зависят от экспериментальных условий, что накопление универсальных библиотек становится невозможным. Однако в некоторых случаях использование библиотек внутри фирмы или института может быть оправданным. [c.298]

    В последнее время масс-спектрометрия приобрела значение и при определении элементного состава продуктов органического синтеза с использованием точного определения массы при помощи двухсекторных приборов высокого разрешения. И в этом случае наиболее распространен вариант ионизации электронным ударом. В некоторых случаях для обеспечения значимого сигнала молекулярного иона требуются электроны с низкой энергией (10-20 эВ в отличие от обычного значения 70 эВ). Точное определение массы производят при помощи методики совпадения пиков. Определяемое соединение вводят в образец одновременно с подходящим веществом сравнения, например перфторке- [c.300]

    Очевидно, что методика идентификации при помощи ГХ-МС или прямого ввода пробы и ионизации электронным ударом не всегда приводит к успеху. В принципе можно сказать, что ее применение ограничено веществами, имеющими значительную плотность паров (летучесть) и термическую стабильность. В этом отношении прямой ввод пробы имеет более широкий диапазон приложений, чем ГХ-МС. Область применения ГХ-МС может быть расширена за счет дериватизации компонентов, увеличивающей их летучесть, что часто находит применение в традиционном газохроматографическом анализе (см. разд. 5.2). В масс-спектрометрии использование подобных реакций дериватизации преследует две цели. Первая из них заключается в увеличении летучести вещества экранированием полярных групп, т. е. полярные протоны кислот, аминов, спиртов и фенолов заменяются более инертными группами путем, например, этерификации кислотных групп, ацетилирования амихюгрупп или силанизиро-вания. Кроме этого, дериватизацией можно улучшить параметры ионизации. Так, включение пентафторфенильного заместителя обеспечивает более интенсивный отклик в случае масс-спектрометрии отрицательно заряженных ионов при химической ионизации электронным захватом. В рамках этих направлений, многие нелетучие и (или) термически нестабильные вещества, такие, как стероиды, (амино)кислоты, сахара, и широкий спектр лекарственных препаратов, становятся доступными газохроматографическому и ГХ-МС-анализу. Очевидно, что процедура дериватизации влияет на массу исследуемого соединения. В общем случае, сдвиг в область более высоких значений m/z является преимуществом, так как в этой области должно быть меньшее число мешающих компонентов. Однако в случае идентификации неизвестных соединений надо помнить, что дериватизация может привести и к непредвиденным артефактам тогда для определения молекулярных масс рекомендуется использовать методы мягкой ионизации (разд. 9.4.2). [c.301]

    В типичном масс-спектрометре проба вводится в вакуумную камеру в виде паров или газа. Следовательно, твердые вещества или очень высококипящие жидкости (с температурой кипения > 250°С), как правило, не могут быть подвергнуты анализу с использованием обычного масс-спектрометра. Давление внутри масс-спектрометра приблизительно в миллиард раз ниже нормального атмосферного давления, таким образом непрерывный ввод пробы при оп-1те-анализе представляет достаточно сложную техническую задачу. Для того чтобы поддержать низкое давление в масс-спектрометре без перегрузки его вакуумных насосов, необходимо использовать специальный ограничитель потока. Существует четыре способа подключения масс-спектрометра к котро-лируемым технологическим линиям капиллярный ввод, молекулярное натекание, пористая прокладка и мембранное соединение. После того как проба введена в масс-спектрометр, она ионизируется в ионизационной камере. Наиболее общий метод ионизации — ионизащя электронным ударом. Следующей стадией за ионизацией молекул пробы является разделение заряженных частиц в соответствии с их массой. Эта стадия в приборе выполняется в масс-анализаторе. Различают два основных типа масс-анализаторов, используемых в масс-спектрометрах для промышленного анализа магнитные и квадрупольные масс-анализаторы [16.4-32,16.4-33]. Магнитные анализаторы обычно дают наиболее стабильные показания. Масс-спектрометры, способные проводить измерения ионов с массой более чем 200 атомных единиц массы (а.е.м.), обычно имеют квадрупольные анализаторы, поскольку они менее дорогие и более компактные по сравнению с магнитными анализаторами. [c.661]

    В растворах ионы образуются в результате гетеролитического расщепления ковалентных связей ионогенов. Ионизации благоприятствует растворитель, обладающий электронодонорны-мии или электроноакцепторными свойствами (см. разд. 2.6). Напротив, в газовой фазе ионизация нейтральных молекул до свободных ионов наблюдается редко, поскольку такой процесс весьма эндотермичен. Например, для того чтобы превратить газообразный НС1 в Н и С1 , необходимо затратить 1393 кДж моль (333 ккал-МОЛЬ ) энергии, что намного превышает энергию гомолитического расщепления связи Н—С1 на атомы водорода и хлора (431 кДж-моль или 103 ккал-моль ). Следовательно, для образования в газовой фазе изолированных ионов исходным молекулам необходимо передать достаточное количество энергии, причем способ передачи энергии должен принципиально отличаться от способа передачи энергии за счет сольватации растворителями-ДЭП и АЭП. Для этой цели чаще всего применяют ионизацию молекул в газовой фазе под действием электронного удара, т. е. метод ионизации, широко применяющийся в масс-спектрометрии. В отличие от ионов в растворе, стабилизированных сольватными оболочками," ионы в газовой фазе при столкновении с любой твердой поверхностью немедленно разрушаются. Поэтому для изучения реакционной способности ионов в газовой фазе необходимо принять особые меры для ограничения их движения и для удерживания в том или ином объеме в течение достаточно длительного промежутка времени. Для решения этой задачи разработано несколько приемов. В масс-спектрометрии с ИЦР используется статическая магнитная ловушка [469J. [c.183]


Смотреть страницы где упоминается термин Ионизация в масс-спектрометрии электронным ударом: [c.120]    [c.9]    [c.266]    [c.274]    [c.652]    [c.200]    [c.146]    [c.315]    [c.319]    [c.267]    [c.279]   
Аналитическая химия Том 2 (2004) -- [ c.2 , c.259 , c.260 ]




ПОИСК





Смотрите так же термины и статьи:

Газовая хромато-масс-спектрометрия ионизация электронным ударом

Ионизация в масс-спектрометрии

Масс-спектрометр

Масс-спектрометрия

Масс-спектрометрия масс-спектрометры

Электрон масса



© 2025 chem21.info Реклама на сайте