Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Образование двойного слоя на границе металл — раствор

    А. Н. Фрумкиным было показано, что образование двойного электрического слоя на границе металл/раствор обусловлено величиной и знаком разности потенциалов между металлом и раствором и, когда заряд электрода по отношению к раствору становится равным нулю, двойной ионный слой исчезает. Электродный потенциал такого электрода (с нулевым [c.427]


    Дальнейшее развитие теории строения двойного электрического слоя было дано в работах Грэма, Парсонса и Деванатхана (1947— 1959) и др. По мнению этих авторов, в плотной части двойного слоя следует различать внутренний и внешний гельмгольцевскпе слои. Внутренний гельмгольцевский слой образован специфически адсорбированными ионами, которые частично или полностью дегидратированы и образуют с металлом диполи. Во внешнем гельмгольцевском слое находятся гидратированные ионы, притянутые к поверхности металла электростатическими силами. Непосредственно за внешним гельмгольцевским слоем следует диффузная область. Было показано, что во многих случаях такая модель электрического двойного слоя обладает рядом преимуш,еств перед штерновской и позволяет полнее истолковать опытные закономерности. В настоящее время большое внимание уделяется роли молекул растворителя в формировании двойного электрического слоя на границе металл — раствор. [c.277]

    Приведенные примеры не исчерпывают всех возможных случаев образования двойного электрического слоя, а лишь иллюстрируют взаимную связь процессов адсорбции на границе электрод — раствор и соответствующее изменение гальвани-потенциала А ф. Такого рода связь существует не только на границе металл — раствор. Например, образование двойного электрического слоя на границе раствор — воздух связано с процессами адсорбции на этой границе, которые приводят к изменению поверхностного потенциала х - Итак, исследование двойного электрического слоя — это совместное изучение процессов адсорбции и соответствующего изменения скачков потенциала. Посмотрим, как решаются эти задачи экспериментально и какие выводы можно сделать из полученных результатов. [c.29]

    Для обратимых электродов определение заряда на основе уравнения (15.1) становится затруднительным из-за возможности перехода ионов через границу раздела фаз. Для металлов платиновой группы, а также металлов группы железа и ряда других возникает еще дополнительное осложнение, связанное с тем, что частичный перенос заряда адсорбированных ионов уже нельзя не учитывать. В пользу переноса заряда свидетельствуют данные по кинетике адсорбции и обмена ионов. Скорости адсорбции и обмена оказываются сравнительно небольшими, а адсорбционное равновесие устанавливается от нескольких минут до многих часов. Для сравнения отметим, что время образования двойного слоя на ртутном электроде в растворах неорганических солей обычно не превышает миллионных долей секунды. На перенос заряда указывают большие величины адсорбций ионов на платиновых металлах. [c.71]


    Приведенные примеры не исчерпывают всех возможных случаев образования двойного электрического слоя, а лишь иллюстрируют взаимную связь процессов адсорбции на границе электрод — раствор и соответствующее изменение гальвани-потенциала фр. Такого рода связь существует не только на границе металл — раствор. Например, образование двойного электрического слоя на границе раствор — воздух связано с процессами адсорбции на этой границе, которые приводят к изменению поверхностного потенциала рфо. [c.31]

    Для обратимых электродов определение заряда на основе уравнения (15.1) становится затруднительным из-за возможности перехода ионов через границу раздела фаз. Для металлов платиновой группы, а также металлов группы железа и ряда других возникает еще дополнительное осложнение, связанное с тем, что частичный перенос заряда адсорбированных ионов уже нельзя не учитывать. В пользу переноса заряда свидетельствуют данные по кинетике адсорбции и обмена ионов. Скорости адсорбции и обмена оказываются сравнительно небольшими, а адсорбционное равновесие устанавливается от нескольких минут до многих часов. Для сравнения отметим, что время образования двойного слоя на ртутном электроде в растворах неорганических солей обычно не превышает миллионных долей секунды. На перенос заряда указывают большие величины адсорбций ионов на платиновых металлах. Перенос заряда вытекает также из данных по изучению сверхэквивалентной адсорбции ионов на платиновых металлах. Так, на платине в отличие от ртути заряд сверхэквивалентно адсорбированных анионов возрастает в ряду S0 < I < l" < Вг" и при изменении потенциала электрода или остается постоянным, или уменьшается, что можно объяснить возрастанием переноса заряда при росте потенциала. Об этом свидетельствуют данные по адсорбции катионов при положительных зарядах поверхности (рис. 39) при сдвиге потен- [c.77]

Рис. 10. Образование двойного электрического слоя на границе металл — раствор его соли Ме ,Ас а — в результате перехода ионов металла в раствор б — в результате перехода ионов металла из раствора Рис. 10. <a href="/info/72517">Образование двойного электрического слоя</a> на <a href="/info/358042">границе металл</a> — раствор его соли Ме ,Ас а — в <a href="/info/1476195">результате перехода</a> <a href="/info/31475">ионов металла</a> в раствор б — в <a href="/info/1476195">результате перехода</a> <a href="/info/31475">ионов металла</a> из раствора
    При опускании металлической пластинки в раствор своих ионов металл и раствор взаимодействуют и становится возможным переход ионов из металла в раствор и обратно. В первый момент направление этих переходов определяется соотношением величин Эм и Эр. Если Эм>Эр, то после погружения металла в раствор катионы металла будут переходить из раствора в кристаллическую решетку. Так как катионы несут положительные заряды, то это ведет к заряжанию электрода положительным электричеством, а раствора, в котором катионов недостает, — отрицательным. Это затрудняет дальнейший переход катионов. В конце концов в системе устанавливается динамическое равновесие, т. е. переход ионов из раствора в металл продолжается, но одновременно и с той же скоростью происходит обратный переход тех же ионов из металла в раствор. Соответствующие заряды в обеих фазах (положительные в металле и отрицательные в растворе) располагаются вблизи поверхности, образуя на границе металл — раствор ионный двойной электрический слой. Пространственное разделение зарядов противоположного знака с образованием своеобразного микроконденсатора— двойного электрического слоя — приводит к появлению потенциала. [c.12]

    Если металлический электрод погрузить в раствор его соли, то процессы, протекающие йа границе металл — раствор, будут аналогичны рассмотренным выше. Отличие состоит лишь в том, что для достижения равновесия при образовании двойного электрического слоя требуется меньшее растворение металла, так как частично ионы металла уже присутствуют в растворе его соли. [c.175]

    ОБРАЗОВАНИЕ ДВОЙНОГО СЛОЯ НА ГРАНИЦЕ МЕТАЛЛ-РАСТВОР [c.7]

    Кабановым с сотрудниками [68, 71, 721 было показано, что наступление анодной пассивности железа вызывается адсорбцией на нем кислорода, изменяющей строение двойного слоя на границе металл — раствор. Растворение железа в щелочных электролитах резко замедлялось уже при наличии на аноде весьма малых количеств кислорода, не достаточных даже для образования моноатомного слоя. [c.65]

    Рассматривая отдельные случаи порознь, не следует заб з -вать, что на поверхности электрода может быть образован двойной слой, обусловленный несколькими из указанных выше причин. Так, ионному двойному слою, возникшему вследствие выхода ионов из металла в раствор, может сопутствовать и адсорбционный слой. Строение двойного слоя в данном случае будет сложным, и скачок потенциала на границе будет зависеть от всех составных частей этого слоя. [c.205]


    Мы могли бы для случая образования двойного слоя на границе металл — вакуум построить энергетическую диаграмму, подобную приведенной выше для случая образования ионного двойного слоя на границе металл—раствор (рис. 34).  [c.221]

    Значительная часть наших сведений о строении двойного электрического слоя на границе металл/раствор и множество различных работ по измерению скачков потенциала в гальванических цепях была получена при помощи капиллярного электрометра на ртутных электродах. Ранее считали, основываясь на работах с очень разбавленными амальгамами, что природа электрода слабо влияет на э. к. м. Фрумкин и Городецкая [57] убедительно опровергли эти представления путем простого наблюдения сдвига 1 э.к.м. ртути при добавлении к ней различных количеств таллия (вплоть до 41%). В некоторых более новых работах это было показано на амальгамах меди [58], а также и на других амальгамах [59, 60]. Образование амальгамы является, очевидно, причиной появления на некоторы х электрокапиллярных кривых двух максимумов [61, 62]. [c.206]

    Образование двойного слоя означает возникновение на границе соприкосновения металла с раствором электролита, содержащим катионы данного металла, скачка потенциала, который называется р а в н о в е с н ы м электродным потенциалом и который при заданных условиях имеет определенную величину. [c.17]

    Уравнение (5) достаточно строго решается для случая экстракционного равновесия при одном допущении, что образование ионного двойного сЛоя практически не сказывается на ориентации молекул в поверхностных слоях жидкости, а также на адсорбционных явлениях. Это допущение аналогично известному допущению, что возникновение ионного скачка потенциала не сказывается на работе выхода электрона [5], а также применяемому в электрохимии допущению о неизменности контактного скачка потенциала при образовании ионного двойного слоя на границе металл — раствор [6]. [c.13]

    А. Н. Фрумкиным было показано, что образование двойного электрического слоя на границе металл/раствор обусловлено величиной и знаком разности потенциалов между металлом и раствором и, когда заряд электрода по отношению к раствору становится равным нулю, двойной ионный слой исчезает. Электродный потенциал такого электрода (с нулевым зарядом), отнесенный, как обычно, к нормальному водородному электроду, был назван потенциалом нулевого заряда. Он равен э. д. с. гальванической цепи из такого электрода (с нулевым зарядом) и нормального водородного электрода. Значения потенциала нулевого заряда для некоторых электродов приведены в табл. 45. Разность потенциалов нулевого заряда двух электродов связана с контактной разностью потенциалов между соответствующими металлами. [c.415]

Рис. 23. Образование двойного электрического слоя иа границе металл — раствор его соли Ме я — в результате перехода ионов металла ь раствор Рис. 23. <a href="/info/72517">Образование двойного электрического слоя</a> иа <a href="/info/358042">границе металл</a> — раствор его соли Ме я — в <a href="/info/1476195">результате перехода</a> <a href="/info/31475">ионов металла</a> ь раствор
    В другом случае соприкосновения двух фаз ион, например металла, переходит в раствор, что приводит к возникновению электрических зарядов у обеих фаз, участвующих в обмене, и образованию двойного электрического слоя. Последний характеризуется величиной скачка электрического потенциала на границе раздела фаз. [c.359]

    На границе раздела фаз происходит пространственное разделение зарядов и образование своеобразного микроконденсатора — двойного электрического слоя. Термин двойной электрический слой означает пространственное разделение двух слоев зарядов противоположного знака. Обычно этим термином пользуются также и для характеристики строения границы раздела между электродом и раствором, хотя структура этой границы является более сложной двойные слои образуются целиком и в металле, и в поверхностном слое ориентированных диполей растворителя, и в результате различной адсорбции ионов противоположного знака. [c.26]

    Для практической реализации адсорбционного метода необходимо использовать электроды с высокоразвитой поверхностью. Такие электроды изготовляются из металлов платиновой группы. Электролизом, например выделением платины на платине, можно приготовить электрод, истинная поверхность которого в 10 —Ю раз превышает его видимую поверхность. Видимую поверхность электрода также можно увеличить в 10- -100 раз, если использовать в качестве основы фольгу или сетку, скрученную в компактный рулон. Таким образом, можно добиться, что количество ионов, участвующих в образовании двойного слоя, возрастет примерно в 10 раз и при <7=0,2 Кл/м составит Ю- г-экв. Такое количество ионов содержится в 10 мл 0,01 н. раствора. Его убыль из раствора может быть зафиксирована обычными аналитическими методами, например простым титрованием. На рис. УП.4 представлена полученная адсорбционным методом кривая зависимости заряда платинированного платинового электрода от его потенциала в растворе 10-2 д Н2504+1 н. ЫагЗО . В этой системе на границе электрод — раствор устанавливается равновесие НзО++е-(Р1) Надс+НгО [c.170]

    Для более полного представления об э. д. с. гальванических цепей следует ввести понятие о потенциале нулевого заряда — о нулевой точке металла. Как было показано ранее, возникновение двон1юго слоя на границе металл — раствор связано с односторонним переходом ионов металла в раствор или же с обратным процессом разряда ионов металла на электроде. В первом случае наружную обкладку двойного слоя образуют катионы, адсорбированные на отрицательно заряженной поверхности металла. Во втором — поверхность электрода несет положительный заряд и на ней вследствие электростатического притяжения адсорбируются анионы из раствора. Наряду с этим вполне возможно, что после погружения металла в раствор ие будет наблюдаться ни перехода катионов в раствор, ни их разряда на электроде. Очевидно, при этом иа поверхности металла отсутствует электрический заряд. Вследствие этого отпадает причина образования ионного двойного слоя и, как полагали некоторое время, вообще возникновения скачка потенциала иа границе металл — раствор. В действительности отсутствие заряда иа поверхности металла не препятствует образованию скачка [ютенциала за счет адсорбции поверхностно-активных ионов из раствора или ориентации дипольных молекул растворителя. [c.58]

    Во всех этих примерах образование двойного слоя связано с определенными свойствами межфазной границы, проницаемой для заряженных частиц одного какого-либо сорта электронов, катионов металла, ионов малого размера. Если перенос электрических зарядов через границу раздела фаз невозможен, то двойной слой возникает в результате избирательной адсорбции поверхностно-активных ионов или дипольных молекул растворителя. Подобного рода скачки потенциала обнаружены на границе раствор—воздух, если в растворе присутствуют поверхностно-активные ионы. При адсорбции дипольных молекул, например на ртути, происходит их ориентация, вследствие которрй к поверхности металла оказывается обращенным какой-либо определенный конец диполя, и двойной слой реализуется внутри самих адсорбированных молекул (рис. 2). [c.8]

    При электролитическом рафинировании в электролиты добавляют поверхностно-активные и ко.ллоидные вещества для получения плотных или блестящих осадков. Эти добавки адсорбируются на поверхности растущих кристаллов металла и приводят к образованию осадков. На поверхности анода могут адсорбироваться поверх-ностно-активные, коллоидные вещества, а также дипольные и нейтральные молекулы, которые способны поляризоваться под влиянием электрического поля на границе металл — раствор. Они приводят к изменению строения двойного электрического слоя и могут интенсифицировать процессы, протекающие по электрохимическому механизму. [c.171]

    На границе гомогенная поверхность металла — раствор электролита — имеет место образование двойного слоя, состоящего из электронов в поверхностном слое металла и ионов металла в растворе. Если потенциал металла оказывается отрицательнее потенциала равновесного водородного электрода, то находящийся в растворё ион водорода может пройти через барьер двойного слоя и разрядиться с образованием атома, а затем молекулы водорода. Соответственно новый ион-атом металла в связи с термодинамической неустойчивостью металла перейдет в раствор. Таким образом, в результате последовательных реакций ионизации одних и восстановления других ионов будет иметь место разрушение гомогенной поверхности металла. Аналогичное действие будет иметь и нейтральная молекула кислорода, которая примет на себя избыточный электрон в металле и даст возможность переходу нового иона металла в раствор. [c.41]

    Тсрможение процесса анодного растворения металла при пассивировании в определенной степени может быть вызвано специфической и электростатической адсорбцией ионов, изменяющих величину ifi -потенциала и образующих поверхностные комплексы, оказывающие определенное влияние на скорость анодного растворения. Однако решающую роль играет изменение строения двойного электрического слоя на поверхности металла и непосредственно на границе металл — раствор. При этом, если происходит образование прочной связи адсорбированного (хемосорбирован-ного вещества с металлом на всей поверхности, то скорость процесса сильно замедляется. По такому механизму происходит пассивирование платины в растворах НС1, причем при адсорбции кислорода в раствор вытесняется эквивалентное число адсорбированных ионов хлора, что и вызывает снижение плотности тока анодного растворения платины по экспоненциальному закону (адсорбционно-электрохимический механизм Б. В. Эршлера). Очевидно, что при пассивировании возможно и неполное покрытие поверхности металла кислородом с образованием поверхностных соединений. В этом случае замедление скорости анодного процесса связано с блокировкой части активной поверхности. [c.353]

    При соприкосновении проводника первого рода с электролитом на границе электрод — раствор возникает двойной электрический слой. В качестве примера рассмотрим медный электрод, погруженный в раствор Си304. Химический потенциал ионов меди в металле при данной температуре можно считать постоянным, тогда как химический потенциал ионов меди в растворе зависит от концентрации соли. Таким образом, в общем случае эти химические потенциалы неодинаковы. Пусть концентрация СиЗО такова, что химический потенциал ионов меди в растворе больше химического потенциала этих ионов в металле. Тогда при погружении металла в раствор часть ионов из раствора дегидратируется и перейдет на металл, создав на нем положительный заряд. Этот заряд будет препятствовать дальнейшему переходу ионов Сц2+ из раствора на металл и приведет к образованию вблизи электрода слоя притянутых к нему анионов 504 (рис. XX, 1а). Установится так называемое электрохимическое равновесие, при котором химические потенциалы ионов в металле и в растворе будут отличаться на величину разности потенциалов образующегося при этом двойного электрического слоя  [c.531]


Смотреть страницы где упоминается термин Образование двойного слоя на границе металл — раствор: [c.301]    [c.153]    [c.204]    [c.35]    [c.41]    [c.422]    [c.232]    [c.22]   
Смотреть главы в:

Электрохимические основы теории коррозии металлов -> Образование двойного слоя на границе металл — раствор




ПОИСК





Смотрите так же термины и статьи:

Металлы растворов

Образование металлов

Растворы Образование растворов

Растворы образование



© 2024 chem21.info Реклама на сайте