Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Охлаждение отвод теплоты

    При нагревании кристаллов их плавление всегда начинается сразу по достижении температуры плавления — кристаллы практически перегреть невозможно. Расплав же может быть переохлажден ниже температуры плавления. На рис. 9.10 показаны температурные кривые кристаллизации плавов индивидуальных веществ. Кривая 1 относится к случаю, когда кристаллизация начинается сразу после охлаждения до Тк и идет без заметного переохлаждения плава отвод теплоты от системы компенсируется теплотой кристаллизации (горизонтальный участок), которая завершается в точке а, после [c.258]


    Вследствие высокого значения скрытой теплоты испарения воды даже незначительное ее испарение сопровождается отводом большого количества тепла так, при испарении 5% воды, поступающей для охлаждения, отводится около 27 ккал на 1 кГ воды. Опыт работы оросительных холодильников и конденсаторов показывает, что У около 50% тенла отводится [c.540]

    Схема абсорбционной холодильной машины показана на рис. 9.10. Газообразный аммиак ( 99% ЫНз), выделившийся из водноаммиачного раствора в кипятильнике 1, при высоком давлении поступает в конденсатор 2, где конденсируется при высокой температуре Т, отдавая тепло Q охлаждающей воде. Сжиженный аммиак проходит дросселирующий вентиль 3 и испаряется в испарителе 4, воспринимая тепло Qo на низком температурном уровне То. По выходе из испарителя газообразный аммиак направляется в абсорбер 5 и при охлаждении (отвод теплоты растворения) поглощается водой с образованием высококонцентрированного раствора ( — 50% ЫНз). [c.195]

    Принцип первого метода состоит в прямом охлаждении слоя катализатора за счет циркуляции газа с охлаждением последнего за пределами реакторов. Так как теплоемкость газа невелика, то необходимая для отвода теплоты реакции кратность циркуляции очень значительна, тем более что увеличение температуры газового потока не должно быть велико. Применялась кратность циркуляции, равная 100, т. е. на 1 л свежего газа подавалось 100 л циркуляционного. [c.113]

    При отводе теплоты циркуляционным орошением (см. рис. 34, г) часть жидкости забирается с одной из верхних тарелок колонны, прокачивается насосом через холодильник и охлажденная возвращается на верхнюю тарелку колонны. В результате контакта паров с циркулирующим на верхних тарелках холодным орошением происходит тепломассообмен и образуется количество жидкости, достаточное для поддержания нормального уровня ее на тарелках. [c.104]

    Съем тепла осуществляется в основном через рубашку реактора, охлаждаемую рассолом. Среди способов отвода теплоты полимеризации известен также метод охлаждения реакционной массы за счет частичного испарения растворителя и мономера. При этом следует принимать меры по предотвращению вспенивания [44]. [c.221]

    Охлаждение в печах исходных материалов и полученных продуктов осуществляется отводом теплоты для снижения их температуры до требуемой с заданной или максимально возможной скоростью. [c.54]


    Как показывают опытные данные, при кристаллизации из чистой жидкости скорость роста кристаллов при температуре равновесия между фазами равна нулю и увеличивается по мере понижения температуры до некоторого предела. При значительной теплоте отвердевания и при малой теплопроводности вещества выделяющаяся теплота способствует установлению на поверхности раздела температуры равновесия, и только отвод теплоты от системы приводит к одностороннему течению процесса. Чем больше скорость этого отвода теплоты, тем больше, до известного предела, и скорость кристаллизации. Если теплопроводность материала невелика, то процесс может тормозиться недостаточной скоростью передачи теплоты от поверхности соприкосновения фаз к источнику охлаждения. В таких системах перемешивание жидкости, [c.487]

    Для многих процессов смешения скорость реакции на холоду очень низка, но если реагенты нагреть, например, с 80 до 120 °С, то начнется экзотермическая реакция. Конечно, такие емкости нужно охлаждать для отвода теплоты реакции. Это может создать определенные проблемы для контроля. Например, если один из реагентов добавляется непрерывно, а емкость временно не охлаждается, то возрастание концентрации реагента может привести к такому выделению тепла за счет реакции во всем объеме, что это количество тепла выйдет за пределы возможностей системы охлаждения. Подобным же образом прекращение перемешивания, или отказ водяного охлаждения, или что-либо еще может привести к выходу реакции из-под контроля. [c.104]

    Далее они поступают в окислитель, в верхней части которого установлен фильтр для улавливания платины (стекловата), затем последовательно они проходят подогреватель воздуха, где охлаждаются до 210—230°С, подогреватель хвостовых газов, где охлаждаются до 150—160°С, и холодильник-конденсатор, в котором температура нитрозных газов снижается до 45—50°С. Охлажденные нитрозные газы поступают в нижнюю часть абсорбционной колонны, представляющей собой аппарат диаметром 2, высотой 46 м, снабженный 50 ситчатыми тарелками. На тарелках уложены змеевики, в которые подается оборотная вода для отвода теплоты. На верхнюю тарелку подается охлажденный конденсат воды, который, двигаясь навстречу потоку нитрозных газов, поглощает оксиды азота с образованием азотной кислоты. Полученная азотная кислота самотеком направляется в продувочную колонну, где прн помощи горячего воздуха производится отдувка растворенных оксидов азота, которые подаются на 6-ю тарелку аб- [c.106]

    Способ масляной абсорбции применен на Миннибаевском, Туймазинском, Шкаповском, Коробковском, Долинском и других ГПЗ. Однако в технологических схемах заводов имеются различия характер проведения процесса в абсорбере и АОК (наличие или отсутствие промежуточного отвода теплоты) тип охлаждающей среды (обычное водяное или искусственное охлаждение) различные параметры (давление колеблется от 1,4 до 4,0 МПа, температура изменяется от —20 до +30—40 °С) способ подвода теплоты в АОК (за счет использования теплоты тощего абсорбента в теплообменниках или через печь). [c.51]

    Для отвода теплоты и влаги из охлаждаемых помещений в них устанавливают местные охлаждающие аппараты, в которых теплота, в том числе теплота конденсации влаги, передается охлаждающей среде. Охлаждающей средой может быть холодильный агент — фреон, аммиак и т. п. В тех случаях, когда непосредственное охлаждение с помощью хладагента нецелесообразно, используют промежуточные хладоносители, которые переносят тепло от охлаждаемого объекта к хладагенту холодильной машины, находящейся часто на значительном расстоянии. [c.300]

    Существует другой способ интерпретации первого закона, имеющий особо важное значение для химии. Будем рассматривать уравнение (15-1) просто как определение некоторой функции, называемой внутренней энергией Е. Напомним, что при нагревании газа он может совершать работу (см. подпись к рис. 15-2), но можно и обратить этот процесс, т.е. совершать работу над газом, сжимая его, и при этом отводить теплоту, выделяемую газом. Наконец, если нагревать газ, не давая ему выполнять работу, то в этом случае происходит повышение температуры газа. И наоборот, если позволить газу, находящемуся под высоким давлением, расширяться и совершать работу, не нагревая его, то в таком процессе обнаруживается охлаждение газа. Подбирая требуемые условия, удается манипулировать величинами дат независимо. За тем, что происходит в каждом случае, удобно следить, если определять изменение внутренней энергии, АЕ, как разность между добавляемым в систему количеством теплоты и выполненной системой работой, как это следует из уравнения (15-1). Если при добавлении в систему некоторого количества теплоты система выполняет в точности эквивалентную работу, внутренняя энергия системы остается неизменной. Когда мы нагреваем газ, но ограничиваем его объем, лишая газ возможности расширяться и вьшолнять работу, внутренняя энергия газа возрастает на величину, равную поступившему в него количеству теплоты. Наконец, если мы используем газ для совершения работы, не поставляя в него теплоту, внутренняя энергия газа уменьшается на величину, равную выполненной работе. Наши обьщенные наблюдения относительно того, что в одних из этих случаев газ нагревается, а в других охлаждается, указывают на связь внутренней энергии и температуры газа. [c.15]


    Точка 1. Охлаждение фенола ведет к его кристаллизации в точке а (если не будет переохлаждения). При 1>1а система обладает одной степенью свободы, поэтому температура понижается. При ta появляется твердый фенол система становится двухфазной (инвариантной), что отвечает температурной остановке, длительность которой зависит от количества фенола и скорости отвода теплоты (отвердевание фенола). В момент исчезновения последней капли жидкого фенола система вновь станет одновариантной, а температура начнет понижаться, так как с исчезновением жидкой фазы исчерпался и источник теплоты кристаллизации. Процесс охлаждения воды (точка 10 и кривая охлаждения 10) аналогичен рассмотренному. [c.204]

    Если расплавленное вещество медленно охлаждать, то его кристаллизация вызовет температурную остановку, так как выделяющаяся скрытая теплота отвердевания будет компенсировать отвод теплоты. Поэтому на кривой охлаждения произойдет резкое изменение углового коэффициента (кривая 1, рис. 47) моменту выделения первого кристалла отвечает точка а. [c.168]

    Длительность температурной остановки, а тем самым размер горизонтального участка на кривой охлаждения, зависит от количества вещества и от скорости отвода теплоты. В момент исчезновения последней капли жидкости (точка б) температура вновь начнет падать, так как с этого момента потеря теплоты в окружающую среду уже ничем не возмещается. [c.169]

    Удельная холодопроизводительность <7 в реальных циклах представляет собою полезный эффект охлаждения, вычисляемый в виде разности холодопроизводительности идеального цикла и потерь холода. При этом в окружающую среду от компрессора отводится теплота <7 . [c.51]

    Охлаждение и затвердевание расплавов достигаются при их контакте с холодными телами. Теплоотвод может осуществляться через охлаждаемую твердую поверхность либо при непосредственном контакте расплава с охлаждающим газом или жидкостью, а также с предварительно охлажденными твердыми телами. Процесс охлаждения и кристаллизации расплава начинается с граничного слоя, контактирующегося с охлаждающим телом, и постепенно распространяется вглубь. Температурное поле в расплаве и поле скоростей кристаллизации устанавливаются в зависимости от массы расплава, его теплофизических свойств, режима отвода теплоты и др. После начала кристаллизации на температурное поле влияет и выделение [c.260]

    Если сжатие протекает без охлаждения или теплота охлаждающей жидкости не используется, а отводится в окружающую среду, то выражение в скобках знаменателя в уравнении (8.15) становится равным нулю. [c.194]

    Для отвода теплоты растворения на некоторых установках применяется промежуточное охлаждение абсорбента в одном или нескольких сечениях абсорбера. Охлаждающим агентом служит холодная артезианская вода, пропан или аммиак. Промежуточное охлаждение позволяет повысить извлечение целевых углеводородов при заданном количестве циркулирующего абсорбента. Кроме того, охлаждение дает возможность применять более легкий абсорбент, поглотительная способность которого выше, чем тяжелого, что также обеспечивает более глубокое извлечение целевых углеводородов. [c.98]

    Смачивающий режим взаимодействия капель. В этом режиме на охлаждаемой поверхности отсутствует пленка, и капли, достигая поверхности и взаимодействуя с ней, образуют пятна жидкости размером 3—4 мм. С увеличением температуры поверхности размеры пятен уменьшаются. Коэффициент- теплоотдачи при таком режиме охлаждения относительно высок. Интенсивность отвода теплоты здесь определяется температурой поверхности пластины и характеристиками потока диспергированной жидкости скоростью капель, их размерами и концентрацией капель в объеме струи. Скорость и размер капли определяют площадь пятна жидкости, концентрация капель — долю поверхности пластины, покрытой каплями, а температура поверхности — скорость испарения пятна. Экспериментально получено, что коэффициент теплоотдачи пропорционален можно предполагать, что интенсивное испарение на поверхности контакта капля — твердое тело приводит к возникновению усилия, обусловливающего отталкивание жидкости и в конечном счете недоиспользование ее массы..  [c.171]

    Принудительное жидкостное охлаждение применяется при высоких удельных мощностях рассеивания. Наибольшее распространение этот способ получил при охлаждении больших элементов, когда однофазная жидкость прокачивается насосом через специальные каналы в охлаждаемых узлах приборов (электроды мощных ламп, трансформаторы и т. д.). При отводе теплоты от блоков жидкость прокачивается через каналы, выполненные в платах или кожухе аппарата. [c.278]

    Метод откачки паров криогенных жидкостей приводит к их существ, переохлаждению (напр., для жвдкого О2 с т. кип. 90,2 К до 54,361 К - т-ры тройной точки), а также позволяет получать разл. смеси льда и жвдкости из одного и того же в-ва, напр. Н2. Метод де-сорбционного охлаждения заключается в изотермич. адсорбции активным углем рабочего газа (Не, N6) с отводом теплоты процесса в жидкий Н2 (N2) и послед, адиабатич. десорбции газа, при к-рой т-ры хладагента и адсорбента снижаются при То = 14 К (т-ра начала десорбции) достигается охлаждение до = 4 К (т-ра конца десорбции). [c.306]

    Газ сжимают до 3—4 ат, отводя теплоту сжатия водой, после чего охлаждают в три ступени до низкой температуры. Конденсат, выделяющийся на отдельных ступенях охлаждения, напра1зляют в стабилизационную колонну, из которой, как указывалось выше, в качестве головного погона отбирают сжиженные газы. [c.30]

    По мере отвода теплоты от жидкого раствора, исходное состояние которого характеризуется фигуративной точкой к, температура понижается и фигуративная точка опускается. Точка I отвечает предельному охлаждению, при котором система еще однофазна при дальнейшем охлаждении выделяется твердый раствор, состав которого меняется по линии солидуса со состав равновесного с ним жидкого раствора меняется по линии ликвидуса са. Таким образом, например, фигуративной точке всей системы т отвечают точки т" и т равновесных жидкого и твердого растворов. В момент достижения температуры, которой отвечает точка п, система состоит из жидкого раствора а и твердого раствора о. [c.406]

    Обратимся теперь к самой кинетике таких процессов. Рассмотрим, как протекают процессы при отсутствии готовых центров выделения новой фазы, например при замерзании воды, не содержащей таких загрязнений, которые могли бы служить центрами кристаллизации при СС или при температурах, немною более низких (рис. 166). В таком случае вода может быть охлаждена до этих температур без замерзания при более же глубоком охлаждении в ней начнут образовываться кристаллики сначала очень малых размеров, постепенно увеличивающиеся. По отношению к таким более крупным кристаллам вода является уже переохлажденной и начинает интенсивно на них кристаллизоваться это сопровождается более интенсивным выделением теплоты и приводит к повышению температуры до 0° С — температуры равновесия между водой и крупными кристаллами льда. После этого процесс протекает уже обычно при постоянной температуре с той или другой скоростью, определяемой скоростью отвода теплоты. [c.490]

    В последнее время большое внимание уделяют вопросам применения о.хлаждения коронным разрядом к практическим задачам. В [14] предложено охлаждение режущих инструментов с помощью точечных электродов в [15] используются параллелыгые проволочные электроды для улучшения отвода теплоты от стандартных горизонтальных оребренных труб. При достаточной электрической мощности коэффициенты теплоотдачи можно увеличит], на несколько сот процентов. Однако оказывается, что эквивалентный эффект можно получить при более низких затратах и без опасности попасть под напряжение 10 ООО— 100 ООО В просто путем организации вынужденной конвекции с помощью нагнетателя или вентилятора. [c.323]

    Раздел 3.8 посвящен воздухоохлаждаемым теплообменникам и конденсаторам, область применения которых все более расширяется. Это связано с тем, что водяное охлаждение становится все более затруднительным и воздух становится основной средой для отвода теплоты. [c.3]

    В большинстве теплообменников с воздушным охлаждением используется ноток воздуха, создаваемый осевыми вентиляторами, В тех случаях, когда требуется создать большо11 перепад давления дли движения воздуха поперек оребренных труб или когда используются небольшие аппараты, применяк т центробежные вентиляторы, однако, опи нснользуются исключи тельно редко, В некоторых крупных установках применяют градирни с естественной тягой. Одиако последующие замечания касаются прежде всего осевых вентиляторов и связанного с ними оборудования. Желательно иметь по крайней мере два вентилятора на каждый отсек теилообменника, с тем чтобы при выходе из строя одного отвод теплоты от потока жидкости был бы существен. [c.296]

    Рассмотрим один из идеальных обратимых циклов с ожижением рабочего тела (рис. 2.2). После изотермического сжатия до очень высокого давления на участке 1—2 с отводом теплоты в окружающую среду рабочее тело расширяется в детандере Д с отдачей внешней работы Ад и охлаждением газа на участке 2—/ до температуры Тх- При этом образуется жидкость (точка / на диаграмме TS). В теплообменнике Т она изобарически и изотермически испаряется (участок f—<3) за счет теплоты q , отбираемой от охлаждаемого тела. Точка 3 расположена на линии сухого пара на участке 3—I рабочее [c.52]

    В [3.10] ирпводятся также и результаты охлаждения стального листа размерами 500X600X3 мм после нагрева его в печи до температуры примерно 200—1100 С. Вода подавалась через механическую фор- сунку под давлением. Единственным параметром, влияющим на интенсивность отвода теплоты,-оказалась плотность массового потока жидкости на охлаждаемой поверхности это влияние- описано выражением q=5,4 Ю jv° , где < — плотность теплового потока, ккал/(м2-ч) /о— плотность потока жидкости, л/(м2-мнн) температура воды 26°С. [c.148]

    По способу отвода теплоты от тепловыделяющих элементов электрических. ма-П1НН различают схемы косвенного и непосредственного охлаждения в первых отвод теплоты осуществляется с открытых поверхностей активных частей машины во вторых хладагент по специальным каналам подводится к проводникам обмоток машины, отбирая теплоту непосредственно от обмоток. [c.261]

    Все стадии процесса м. б. совмещены в одном аппарате, кроме улавливания тумана, к-рое всегда производят в отдельном аппарате. В пром-сти обычно используют схемы из двух или трех осн. аппаратов. В зависимости от принципа охлаждения газов существуют три способа произ-ва термич. Ф.к, испарительный, циркуляционно-испарительный, теплообмен-но-испарительный. Испарит, системы, основанные на отводе теплоты при испарении воды или разб. Ф. к., наиб, просты в аппаратурном оформлении. Однако из-за относительно большого объема отходящих газов использование таких систем целесообразно лишь в установках небольшой единичной мощности. [c.154]

    Циркуляционно-испарит. системы позволяют совместить в одном аппарате стадии сжигания Р, охлаждения газовой фазы циркулирующей к-той и гвдратации РдОщ. Недостаток схемы - необходимость охлаждения больших объемов к-ты. Теплообменно-испарит. системы совмещают два способа отвода теплоты через стенку башен сжигания и охлаждения, а также путем испарения воды из газовой фазы существенное преимущество системы - отсутствие контуров циркуляции к-ты с насосно-холодильным оборудованием. [c.154]

    В циклах КУ особенно важен способ отвода тегиоты от охлаждаемого тела, к-рое при охлаждении приобретает все т-ры от Го до Tj. Идеальным для данного случая является процесс 4 — 3 (рис. 2) или процесс 1 - 4 (рис. 5), т. е. непрерывный отвод тегиоты на каждом температурном уровне в интервале - Т . В реальных циклах осуществить такой отвод теплоты невозможно. Нек-рого прибгшжения к этому способу можно достигнуть применением ряда ступеней охлаждения на неск. промежуточных уровнях. Для охлаждения при Tj= 150-250 К обычно достаточно использовать цикл с одной ступенью, для сжижения воздуха, Oj или Nj (Г, = 70 -- 90 К) - с двумя ступенями, водорода = 20 К) -с двумя-тремя ступенями, гелия (Г = 4 - 5 К) - не менее чем с тремя ступенями. Температурные уровни Г (т= 1, 2, 3,...) каждой из п ступеней охлаждения в интервале Тд - Т, можно оценить по ф-ле  [c.304]


Смотреть страницы где упоминается термин Охлаждение отвод теплоты : [c.271]    [c.51]    [c.271]    [c.47]    [c.352]    [c.258]    [c.266]    [c.204]    [c.272]    [c.282]    [c.155]    [c.221]   
Процессы и аппараты химической технологии Часть 1 (2002) -- [ c.0 ]

Процессы и аппараты химической технологии Часть 1 (1995) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Отвод

Отвод теплоты



© 2024 chem21.info Реклама на сайте