Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сенгер

    В конце 40-х — начале 50-х годов нашего века химикам удалось обстоятельно проанализировать с помощью метода бумажной хроматографии смеси аминокислот, полученные при расщеплении ряда белков. В результате удалось установить общее число остатков каждой аминокислоты, содержащихся в молекуле белка, однако порядок расположения аминокислот в полипептидной цепи при этом определить, естестве шо, было нельзя. Английский химик Фредерик Сенгер (род. в 1918 г.) изучал инсулин — белковый гормон, состоящий примерно из пятидесяти аминокислот, распределенных между двумя взаимосвязанными пол и пептидными цепями. Сенгер расщепил молекулу на несколько более коротких цепей и проанализировал каждую из них методом бумажной хроматографии. Восемь лет продолжалась кропотливая работа по складыванию мозаики , но к 1953 г. был установлен точный порядок расположения аминокислот в молекуле инсулина. Позднее таким же способом было установлено детальное строение даже больших молекул белка [c.130]


    За исследования строения индивидуальных белков Ф. Сенгеру в 1958 г. была присуждена Нобелевская премия. Однако после этого он переключился на разработку методов определения строения индивидуальных нуклеиновых кислот. Фактически это были поиски путей к определению строения генов-носителей наследственной информации в организмах живых существ. В конц 70-х годов эти работы увенчались успехом, в 1980 г. Ф. Сенгеру была вновь присуждена Нобелевская премия по химии — беспрецедентный случай в истории химии. До него Нобелевскую премию дважды получала М. Кюри, но один раз по химии, а второй раз по физике. Двумя Нобелевскими премиями по физике был отмечен Д. Бардин, и две Нобелевские премии получил Л. Полинг, но одну по химии, а другую за деятельность в защиту мира. [c.185]

    Сенгером и сотр. [187] получены данные о том, что циклодекстрины могут гораздо лучше моделировать ферменты, чем это до сих пор считалось. Было показано, что ири связывании субстратов с акцептором происходят конформационные изменения последнего. Такая ситуация аналогична поведению ферментов, для которых характерно явление индуцированного соответствия фермента с субстратом. [c.312]

    Порядок чередования аминокислотных остатков в полипептидных цепях (называемый первичной структурой) впервые именно таким образом был установлен для белка инсулина. Молекула инсулина имеет молекулярную массу 5733. Она состоит из двух полипептидных цепей, одна из которых содержит 21 аминокислотный остаток, вторая 30. Последовательности аминокислот в короткой и длинной цепях были определены в период 1945—1952 гг. Сенгером и его сотрудниками. Обе цепи в молекуле инсулина соединены дисульфидными связями S—S, образованными между остатками цистина. [c.393]

    Методом, разработанным Сенгером (разд. 14.3), было обнаружено, что молекула гемоглобина млекопитающих содержит четыре полипептидные цепи, к каждой из которых присоединена гем-группа. У большинства млекопитающих гемоглобины имеют цепи двух типов (называемые а- и -цепями), по две цепи каждого типа в молекуле. В нормальном гемоглобине взрослого человека а-цепи построены из 140 аминокислотных остатков, -цепи — из 146. У других млекопитающих число аминокислотных остатков в цепях почти такое же. Последовательность аминокислотных остатков полностью известна для полипептидных цепей нормального гемоглобина человека, для многих аномальных гемоглобинов человека (см. разд. 15.8) и для гемоглобинов многих видов животных. Последовательность первых нескольких остатков в цепях нормального гемоглобина взрослого человека следующая  [c.440]


    В период между 1925 — 1930 гг. Сведберг с помощью ультрацентрифугирования произвел определение молекулярных масс различных белков. Одновременно применение других аналитических методов, как, например, электрофореза и различных видов хроматографии, привело к развитию аналитической белковой химии. В 1951 — 1956 гг. Сенгер [20, 21] установил аминокислотную последовательность инсулина. Использованные при этом методы легли в основу систематического определения первичной структуры многих белков. Созданный Эдманом в 1966 г. секвенатор и применение масс-спектрометрии в сочетании с ЭВМ как средством регистрации, обработки и оценки масс-спектрометрических данных привели к тому, что к настоящему времени опубликовано более 15 ООО работ, посвященных определению аминокислотных последовательностей, и установлены первичные структуры более чем для 1000 белков. [c.343]

    Наиболее известен динитрофенильный метод Сенгера [97]. В этом методе пептид или белок обрабатывается 2,4-динитрофторбензолом (реагент Сенгера) и образующаяся в результате гидролиза ДНФ-аминокислота экстрагируется и идентифицируется. [c.367]

    Крупные заслуги в установлении строения белков и в их частичном синтезе принадлежат кембриджскому профессору (Англия) Ф. Сенгеру (1918). С 1945 г. он начал свои известные исследования гормона поджелудочной железы — инсулина. Молекулярная масса инсулина оказалась сравнительно небольшой — около 12 000. Было известно, что молекула инсулина состоит из двух полипептидных цепочек различной длины, связанных друг с другом дисульфидным мостиком. [c.262]

    Метод ДНК-пол имера 3но г о копирования в присутствии терминирующих аналогов три-фосфатов (метод Сенгера). Этим методом чаще всего анализируются фрагменты ДНК, клонированные в одноцепочечных фагах, хотя в настоящее время разработаны варианты, применимые и к двухцепочечным ДНК. Прн этом исследуется не сам фрагмент, а комплементарная ему ДНК, которая синтезируется с помощью ДНК-полимеразы в условиях, приводящих к набору продуктов разной длины, содержащих одинаковый 5 -концевой участок, а на [c.325]

    Еще одним методом определения К-концевой аминокислоты в полипептиде является метод Сенгера (1945 г.). [c.521]

    По окончании реакции Сенгера проводят полный гидролиз полипептида и определяют, с какой аминокислотой связан остаток 2,4-динитробензола. Эта аминокислота и является концевой в анализируемом полипептиде. [c.522]

    Дннитрофторбензол реагент Сенгера) — алкилирующий реагент, который нашел широкое применение в аналитической практике (при определении последовательности аминокислот, образующих белковый полимер). [c.49]

    Реагент Сенгера обладает характерными хромоформиымп свойствами (в УФ-и видимой области Хтах = 350 им), которые делают его еще более удобным ирм проведепни анализа. 2,4-Дм итрофеннлы1ые производные аминокислот окрашены [c.50]

    В нач. 50-х гг. была выдвинута идея о трех уровнях организации белковых молекул (К. У. Линдерстрём-Ланг, 1952)-первичной, вторичной и третичной структурах. Определены первичные структуры инсулина (Ф. Сенгер, 1953) и рибонуклеазы (К. Анфинсен, С. Мур, К. Хёрс, У. Стайн, 1960). По данным рентгеноструктурного анализа были построены трехмерные модели миоглобина (Дж. Кендрю, 1958) и гемоглобина (М. Перуц, 1958) и, т. обр,, доказано существование в Б, вторичной и третичной структур, в т. ч. а-спирали, предсказанной Л. Полингом и Р, Кори в 1949-51. [c.248]

    Б. X, сформировалась как самостоятельная область во 2-й пол. 20 а на стыке биохимии и орг, химии, на основе традиционной химии прир. соединений. Ее развитие связано с именами Л. Полинга (открытие а-спирали как одного из главньп элементов пространста структуры полипептидной цепи в белках), А. Тодда (выяснение хим. строения нуклеотидов и первый синтез динуклеотида), Ф. Сенгера (разработка метода определения аминокислотной последовательности в белках и расшифровка с его помощью структуры инсулина), Дю Виньо (хим. синтез биологически активного гормона окситоцина), Д, Бартона и В. Прелога (конформационный анализ), Р. Вудворда (полный хим. синтез мн. сложных прир. соединений, в т.ч. резерпина, хлорофилла, витамина В] ) и др. крупных ученых. [c.288]

    В эти годы созданы новые физ.-хим. методы аиализа. Были заложены основы хроматографич. методов (М. С. Цвет, 1906). В 20-х гг. Т. Сведберг предложил использовать для седиментации белков ультрацентрифугу, вскоре этим методом был выделен ряд вирусов. В 30-х гг. А. Тизе-лиусом заложены основы электрофореза, в 1944 А. Мартином и др. создана распределит, хроматография, для определения структуры прир. соед. впервые стал использоваться рентгеноструктурный анализ (Д. Кроуфут-Ходжкин, 40-е гг.). Благодаря использованию физ.-хим. методов в 50-х гг. достигнуты крупные успехи в изучении двух важнейших классов биополимеров-белков и нуклеиновых к-т Э. Чар-гафф провел детальный хим. анализ нуклеиновых к-т, открыта двойная спираль ДНК (Дж. Уотсон и Ф. Крик, 1953), определена структура инсулина (Ф. Сенгер, 1953), одновременно осуществлен синтез пептидных гормонов -окситоцина и вазопрессина (Дю Виньо, 1953), открыт один из элементов пространственной структуры белков- спираль (Л. Полинг, 1951). В эти годы Р. Замечником открыты рибосомы, что послужило стимулом для изучения механизма синтеза белка. [c.292]


    В др. случае (метод Сенгера) используют олиго- или полинуклеотидную затравку (праймер) известной длины, коплементарную определенному участку Н.к. Затравку наращивают с помощью ДНК-полимеразы, останавливая синтез на одном из четырех типов нуклеотидных остатков с равной вероятностью, независимо от его положения в цепи. Для этого к смеси четырех прир. субстратов ДНК-полимеразы добавляют т.наз. терминатор (обычно 2, З -ди-дезоксинуклеозидтрифосфат)-аналог определяемого нуклеотидного остатка, попадание к-рого на З -конец растущей цепи останавливает синтез. При этом радиоактивная метка вводится либо в затравку, либо в субстрат. Операгщю Повторяют для каждого из четырех нуклеотидов длину образующихся радиоактивных фрагментов определяют стандартным способом. Эти методы в настоящее время удалось полностью автоматизировать (заменив в ряде случаев радиоактивную метку на флуоресцентную) и тем самым в тысячи раз повысить скорость секвенироваиия ДНК. [c.299]

    Н.-мономерные звенья и промежут. продукты биосинтеза нуклеиновых кислот и нуклеотидкоферментов (см. Коферменты), участники мн. др. процессов в обмене в-в (см., напр., Аденозинфосфорные кислоты), исходные в-ва для хим. и хим.-ферментативного синтеза олиго- и полинуклеотидов. Они широко применяются в биол. исследованиях. Так, мн. нуклеозид-5 -трифосфаты, модифицированные по моносаха-ридному остатку (с заменой гидроксила в положении 3 на атом Н, др. атом или группу), включаются с помощью полимераз в цепь нуклеиновой к-ты, обрывая ее рост (терми-нация цепи). Благодаря этому такие Н. широко используют при выяснении первичной структуры нуклеиновых к-т (метод Сенгера). [c.305]

    Инсулин открыт в 1921 г. Бантингом (лауреат Нобелевской премии 1923 г.) и др. как гормон поджелудочной железы, уменьшающий гипергликемию при диабете. Очистка и кристаллизация проведены в 1926 г. Абелем, а в 1955 г. Сенгер опубликовал полную структуру инсулина. (Это выдающееся достижение в 1958 г. также было отмечено Нобелевской преми ей.) И наконец, в 1969 г. лауреат Нобелевской премии Кроуфут-Ходжкин с помощью рентгеноструктурного анализа установила пространственную структуру молекулы инсулина (рис. 2-42). [c.263]

    Однозначное доказательство первичной структуры инсулина, предложенной Сенгером, может быть получено лишь в том случае, когда дисульфидные мостики замыкаются однозначным образом в процессе химического синтеза и дисульфидный обмен исключен. После предварительной работы, проведенной Зервасом и Фотаки, а также Хиски с сотр., это удалось в [c.267]

    Помимо приведенных далее методов следует сослаты я (разд. 2.3.1.1. и 3.8.4,5) на возможность установления аминокислотной последовательности анализом соответствующей белку мРНК. Этот путь приобрел значение благодаря достижениям в определении первичной структуры нуклеиновых кислот (Фредерик Сенгер, Нобелевская премия за 1980 г.). [c.367]

    К середине 1940-х годов пептидная теория белков Фишера и Вальд-шмидт-Лейтца была почти повсеместно принята. Встал вопрос о точном знании деталей химического строения, т.е. о конкретном порядке расположения аминокислот в белковых цепях. Впервые такое сложное исследование удалось провести в течение десятилетия (1945-1954 гг.) ф. Сенгеру, определившему аминокислотную последовательность инсулина. Вторым белком была рибонуклеаза А. Полная структура этого фермента расшифрована С. Муром, К. Хирсом и У. Стейном (1960 г.). Вскоре идентификация химичекого строения белков стала производиться с помощью автоматических секвенаторов и приобрела рутинный характер. Однако достижения в решении первой фундаментальной задачи проблемы белка не принесли удовлетворения. Сначала не вызывало сомнений, что химические и физические свойства белков получат свое объяснение, как только станет известно химическое строение их молекул. Однако основанная на опыте всей органической химии и биохимии надежда на то, что установление химического типа и строения молекул окажется достаточным для понимания хотя бы в общих чертах их специфического функционирования, не оправдалась. Тем самым определение структуры из конечной цели исследования превратилось в необходимый для последующего изучения белков начальный этап. Утвердилась мысль, что химическая универсальность и практически необозримое многообразие свойств соединений этого класса при строгой специфичности его отдельных представителей связаны с особенностями пространственных структур белковых молекул. [c.67]

    В 1971 г. Ф. Сенгер и Г. Николсон предложили жидкостно-мозаичную модель биомембран, согласно которой мембраны представляют собой жидкокристаллические структуры, в которых белки могут быть не только на поверхности мембран, но и пронизывать их насквозь. В этом случае основой мембраны является липидный бислой, в котором углеводородные цепи фосфолипидов находятся в жидкокристаллическом состоянии, и с этим бислоем связаны белки двух типов периферические и интегральнь1е. Первые - гидрофильные, связаны с мембранами водородными и ионными связями и могут быть легко отделены от липидов при промывании буфером, солевым раствором или при центрифугировании. Вторые белки - гидрофобные, находятся внутри мембраны и могут быть выделены только после разрушения липидного слоя детергентом (процесс солюбилизации мембран), например, додецилсульфатом натрия, ЭДТА, тритоном и др. Интегральные белки, как правило, амфипатические, т.е. своей гидрофобной частью они взаимодействуют с жирными кислотами, а гидрофильной частью - с клеточным содержимым. Интегральные белки часто являются гликопротеидами, которые синтезируются в аппарате Гольджи, глико-зилируются в мембране и содержат много гидрофобных АК и до 50% спиральных участков. Эти белки перемещаются внутри липидного бислоя со скоростью, сравнимой с перемещением в среде, имеющей вязкость жидкого масла ( море липидов с плавающими айсбергами белков ). [c.107]

    Ф. Сенгер разработал остроумный метод определения порядка чередования аминокислотных остатков в полипептидных цепочках инсулина. Действием на белок динитрофторбензола он динитрофенилировал аминогруппы аминокислот. Затем путем гидролитического расщепления белка ему удалось отделить Ы-концевую (содержащую свободную аминогруппу) динитрофе-ниламинокислоту и идентифицировать ее. Таким же путем он отделял следующие в полипептидной цепочке аминокислоты друг за другом и тем амым установил их порядок расположения. Оказалось, что одна из цепочек молекулы инсулина (Л) состоит [c.262]

    Успехи в установлении строения и частичном синтезе инсулина еще в 50-х гг. вызвали большой интерес ученых к изучению строения других белков. В частности, внимание химиков привлек фермент рибонуклеаза, обладающий в отличие от инсулина одноцепочечной структурой. Американские ученые К. Хирс, У. Стейн и С. Мур, основываясь на опыте Ф. Сенгера и других исследователей, определили в 1960 г. полную формулу рибонуклеазы. При этом эффективным оказался новый метод, так называемый автоматический анализатор аминокислот , незадолго до этого разработанный У. Стейном, С. Муром и Д. Спекманом. [c.263]

    Приходится удовлетвориться продуктом транскрипции — кДНК. Его можно продуцировать в больших количествах при росте клона и секвенировать по методу Максама — Гилберта или по методу Сенгера. Из нуклеотидной последовательности можно вывести аминокислотную последовательность. Конечно, первичная структура искомого белка, полученная таким путем, [c.370]

    Фредерик Сенгер (род. 1918) — крупнейший современный исследователь (елка и нуклеиновых кислот автор стратегического плана определения амино-[ислотной последовательности в белках ( блочного метода). За установление "Троения инсулина в 1958 г. удостоен Нобелевской премии. В 1980 г. ему 1торично присуждена Нобелевская премия за работы, связанные с расшифровкой енетического кода. [c.355]

    Именно в этот период происходят качественные изменения в химии природных соединений — она вплотную приступает к химическому изучению сложнейших веществ живой природы, в том числе биополимеров. Основной акцент делается на изучение связи между их строением и биологической функцией, что имеет фундаментальное значение для понимания природы процессов жизнедеятельности. Л. Полинг открывает а-спиральные структуры в белках, Ф. Сенгер устанввливает аминокислотную последовательность [c.9]

    Одни из первых методов определения N-концевых аминокислотных остатков был предложен Ф. Сенгером в 1945 г. При реакции а-аминогруппы пептида или белка с 2, 4-динитрофторбензолом получается динитрофенильное (ДНФ) производное, окрашенное в желтый цвет. Последующий кислотный гидролиз (5,7 н. H l) приводит к разрыву пептидных связей и образованию ДНФ-производ-ного N-кониевой аминокислоты. ДНФ-Аминокислота экстрагируется эфиром и идентифицируется методом тонкослойной хроматографии в присутствии стандартов. [c.37]

    Стратегические принципы изучения первичной структуры белка претерпевали значительные изменения по мере развития и усовершенствования применяемых методов. Следует отметить три основных этапа в их развитии. Первый этап начался с к лассической работы Ф. Сенгера (1953) по установлению аминокислотной последовательности инсулина, второй — с широкого введения в структурный анализ белка автоматического секвенатора (начало 70-х годов) и, наконец, третий — с разработки скоростных методов анализа нуклеотидной последовательности ДНК (А. Максам, В. Гилберт, Ф Сенгер, начало 80-х годов). [c.76]

    В 1975 г. А. Максам и У. Гилберт в США и Ф. Сенгер в Великобритании разработали такие методы, ставшие последним звеном в цепи методов, необходимых для широкомасштабных исследований структуры и функционирования геномов. В разработку этих методов существенный вклад был внесен А. Д. Мирзабекоаым и Е. Д. Свердловым (СССР). [c.298]

    Впервые последовательность нуклеиновой кислоты аланиновой тРНК нз дрожжей была расшифрована в 1965 г. Р. Холли. Для установления структуры использовалась методология, аналогичная разработанной Ф. Сенгером для определения аминокислотной последовательности белков. Усовершенствование этого подхода привело н 1975 г. к расшифровке последовательности целого генома — РНК фага MS-2. В настоящее время известны структуры многих тРНК, 5S и 5.8S рибосомных РНК, а также структуры больших рРНК (16S, 23S, I8S и 28S) нз ряда организмов. [c.308]

    Гилберт (ОПЬеН) Уолтер (р. 1932). американский биохимик. Окончил Гарвардский университет (1953) с 1968 г.— профессор этого университета, затем президент фирмы Биогенн. Выполнил основополагающие исследования по изучению механизма специфического взаимодействия белков и ДНК, установлению первичной структуры ДНК. предложил (1977. совместно с А. Мак-самом) метод расшифровки первичной структуры ДНК. Лауреат Нобелевской премии по химии (1960. совместно с Ф. Сенгером и П. Бергом). [c.327]

    Метод Сенгера наиболее часто используется для анализа последовательности ДНК после ее неспецифического расщепления и клонирования суммы получаемых фрагментов. Метод весьма эффективен и экономичен, так же как метод Максама — Гилберта, и позволяет анализировать последовательность свыше 200 звеньев на одном геле. [c.328]


Смотреть страницы где упоминается термин Сенгер: [c.52]    [c.393]    [c.732]    [c.301]    [c.771]    [c.427]    [c.56]    [c.263]    [c.145]    [c.313]    [c.355]    [c.309]   
Проблема белка (1997) -- [ c.67 , c.427 ]

Проблема белка Т.3 (1997) -- [ c.67 , c.427 ]




ПОИСК







© 2024 chem21.info Реклама на сайте