Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метод пептидов и белков

    Рассмотрим теперь метод пептидных карт. Его первый этап состоит в разрыве дисульфидных связей, далее белок денатурируют и расщепляют ферментами, например трипсином или пепсином. В результате получается набор пептидов, размер и аминокислотный состав которых характерен для каждого отдельного белка. Смесь пептидов наносят на лист хроматографической бумаги и проводят в одном направлении хроматографию, а в другом — электрофорез. Пептиды локализуются в виде отдельных пятен, образуя характерную картину ( отпечатки пальцев ), Метод пептидных карт особенно полезен для выявления малых [c.167]


    Тонкие различия в первичной структуре родственных белков часто удается выявить методом отпечатков пальцев . Метод этот состоит в том, что белок подвергают частичному перевариванию с помощью одного или нескольких протеолитических ферментов, а затем разделяют продукты гидролиза и идентифицируют их, пользуясь для этого либо электрофорезом, либо хроматографией на бумаге. На фиг. 32 приведены полученные таким способом отпечатки пальцев , или пептидные карты , нормального и аномального гемоглобинов. Детальное изучение этих пептидных карт показывает, что все пептидные пятна, за исключением одного, идентичны. Таким способом генетически измененный структурный элемент выявляется очень легко, и для установления природы структурного изменения нет надобности устанавливать полную аминокислотную последовательность всей молекулы. Действительно, в ряде случаев весьма определенные указания относительно природы имеющегося замещения можно получить просто исходя из результатов анализа аминокислотного состава соответствующих пептидов, выделенных из двух белков. Но, конечно, однозначные доказательства замены одной аминокислоты на другую получают только после установления аминокислотной последовательности анализируемых пептидов. [c.96]

    Наиболее известен динитрофенильный метод Сенгера [97]. В этом методе пептид или белок обрабатывается 2,4-динитрофторбензолом (реагент Сенгера) и образующаяся в результате гидролиза ДНФ-аминокислота экстрагируется и идентифицируется. [c.367]

    Метод составления пептидных карт, получивший образное название метод отпечатков пальцев , используется при определении сходства или различия гомологичных белков по первичной структуре. Белок инкубируют с каким-либо протеолитическим ферментом. Часто порции белка инкубируют как с пепсином, так и с трипсином. При этом вследствие гидролиза строго определенных пептидных связей образуется смесь коротких пептидов, легко разделяемых с помощью хроматографии в одном направлении и электрофореза-в другом, под углом 90° от первого (пептидная карта). [c.56]

    В сравнении с хроматографическими методами все другие способы очистки белков за последние годы начинают несколько отступать на задний план. Все же следует упомянуть здесь о препаративном электрофорезе, который применяется довольно широко в разных исполнениях. Для фракционирования малых весовых количеств белков разделение смеси белков на зоны ведут в том или ином стабилизирующем наполнителе для ликвидации конвекционного перемешивания. Пригодными наполнителями являются волокна целлюлозы, в частности бумага. Бумажный электрофорез белков похож на разделение аминокислот и пептидов на бумаге, о чем мы уже говорили выше. Другой широко употребительной средой является гель крахмала, который разрезается на кусочки после завершения электрофореза, и из каждого куска элюируется содержащийся в нем белок. [c.131]


    Ферментативные методы гидролиза особенно ценны благодаря присущей им во многих случаях специфичности. Трипсин, представляющий собой так называемую эндопептидазу, быстро расщепляет пептидные связи лишь в том случае, если карбонильная группа расщепляемой амидной связи принадлежит одной из основных аминокислот — лизину или аргинину. Таким образом, трипсин превращает белок в сравнительно малое число триптических пептидов, которые можно разделить и охарактеризовать. Трипсин расщепляет только денатурированные белки, причем для получения хороших результатов нужно предварительно разорвать дисульфидные мостики. [c.166]

    Дальнейшие исследования подтвердили это предположение. Для выяснения природы связи хлорофилл — белок изучали спектры комплексов хлорофилла с белками и более простыми пептидами (глицил-лей-цин, пептон, альбумин, протамины). Показано, что молекулы хлорофилла связаны химическими связями с кислотными и основными группами белка. В целом вопрос о типе связи хлорофилл — белок остается пока открытым. Еще нет метода, позволяющего определить точную ориентацию молекул пигмента и других молекул внутри хлоропласта. [c.167]

    Гидразинолиз по Акабори. Метод определения С-кон-цевых аминокислот действием безводного гидразина был предложен в 1952 г. Акабори Пептид или белок нагревают с безводным гидразином [c.75]

    Твердофазная техника приводила к существенной экономии труда и времени, необходимых для пептидного синтеза. Так, например, ценой значительных усилий Хиршмен с 22 сотрудниками [5f] завершили вьщающийся синтез фермента рибонуклеазы (124 аминокислотных остатка) с помошью традиционных жидкофазных методов. Почти одновременно тот же белок был получен путем автоматизированного твердофазного синтеза [5g], Во втором случае синтез, включающий 369 химических реакций и 11 931 операцию, был вьшолнен двумя участниками (Гатте и Меррифилд) всего за несколько месяцев (в среднем до шести аминокислотных остатков в день присоединялись к растущей полипептидной цепи — фантастический темп ). Последующие усовершенствования позволили построить полностью автоматический синтезатор. Таким образом, дерзновенная и волнующая проблема пептидного синтеза, решение которой ранее требовало огромных затрат труда и времени, теперь может считаться практически решенной (по крайней мере, для не слишком сложных пептидов). [c.302]

    При этом образуются два фрагмента, так называемые S-пептид и S-белок. Они могут быть разделены путем гель-фильтрации на сефадексе G-25. Каждый из этих фрагментов в отдельности неактивен, но при их смешивании активность рибонуклеазы восстанавливается. Такой реконструированный белок получил название рибонуклеазы S. По-видимому, присоединение S-пептида к S-белку происходит в данном случае путем нековалентного взаимодействия. До недавнего времени синтетические исследования рибонуклеазы были в основном связаны с синтезом S-nen-тида а также небольших фрагментов S-белка В 1969 г. осуш,ествлен синтез рибонуклеазы А твердофазным методом и рибонуклеазы S с использованием метода N-карбоксиангидридов [c.181]

    Молекулярная масса и изоэлектрическая точка - характерные параметры белка. Однако в основе точной идентификации белковой молекулы лежит определение аминокислотной последовательности. Уже на первом этапе этого процесса, включающего расщепление белка на мелкие фрагменты, можно получить значительную информацию о данном белке. В настоящее время в продаже имеются протеолитические ферменты и химические реактивы, расщепляющие белки по определенным аминокислотным остаткам (табл. 4-10). Так, фермент трипсин отщепляет остатки лизина и аргинина со стороны карбоксильных групп химический реактив бромистый циан расщепляет пептидные связи, расположенные после остатков метионина. Поскольку такие специфические ферменты и реактивы расщепляют в белковой молекуле ограниченное количество связей, при их воздействии образуется смесь больщих пептидов. Разделив эту смесь методом электрофореза или хроматографии, можно получить пептидную карту, характеризующую исследуемый белок. Такие пептидные карты называют иногда фингерпринтами (отпечатками пальцев) белка (рис. 4-53). [c.219]

    Разделение на фильтрах из геля сефадекса позволяет использовать различие в молекулярном весе [21, 24, 126, 127]. Этот метод по своей эффективности приблизительно соответствует диализу, но может быть осуществлен гораздо быстрее. Линднер и др. [128] экстрагировали сухой препарат задней доли гипофиза свиньи (активность окситоцина и вазопрессина 2—3 Е /мг) пиридиноацетагным буфером. После нейтралит зации раствор пропускали через колонку с сефадексом G-25, элюировали этим же буфером и получили две фракции, дающие положительную реакцию с нингидрином. Первая, более подвижная фракция содержит окситоцин и вазопрессин в виде комплексов пептид — белок вторую фракцию, состоящую из низкомолекулярных неактивных соединений, отбрасывали. Десятиминутная обработка первой фракции 1 М муравьиной кислотой при 70 приводит к диссоциации комплекса и при повторном пропускании через сефадекс G-25 и элюировании 1 М муравьиной кислотой получили медленно передвигающуюся фракцию вазопрессина и окситоцина с активностью приблизительно 100 Е мг. [c.409]


    Японский химик С. Акабори в 1952 г. предложил метод определения С-концевых остатков аминокислот. По этому методу пептид или белок нагревают при 105 °С в течение 10 ч с безводным гидразином. При этом все аминокислоты, кроме С-концевой, превращаются в соответствующие гидразиды, которые отделяют от С-концевой аминокислоты в виде бен-зилиденовых производных  [c.60]

    Таким путем был получен первый 18-членный пептид, в некотором отношении напоминавший белок (например, способностью высаливаться). L- лейц-глиц-(глиц)2 L-лейц-глиц-глиц-глиц-Ь-лейц-глиц-глиц-глиц- глиц -глиц-глиц-глнц-глиц-лейцин Ограниченность этого метода обусловлена [c.490]

    В случае применения безводных органических растворителей, содержащих кислоту, возможна миграция ацильных групп, находящихся у определенных остатков оксиаминокислот. Так, при определении концевых групп по методу Эдмана (см. стр. 237—245), согласно которому производное пептида обрабатывают нитрометаном и НС1 [87], уксусной кислотой й НС1 [88] или диоксаном и НС1 [186] для циклизации Ы-Конце-вого остатка, установлено [2, 314], что на последующих стадиях отщепления обнаруживаются небольшие Количества Ы-концевь1Х остатков серина или треонина. В одном случае это привело к неправильному выводу о последовательности аминокислотных остатков [2, 186]. Обычно исследуемое соединение обрабатывают СвНаЫСЗ или динитрофторбензолом при pH 8,5. Если же белок находится в среде с такой величиной pH до добавления реагента, то свободные аминогруппы, появляющиеся в результате миграции ацильной группы от N к О, вновь образуют пептидные связи. Предварительную [c.222]

    Пептидные связи по обеим сторонам остатка аспарагиновой кислоты в молекуле белка особенно легко гидролизуются разбавленными кислотами [233], приче степень гидролиза зависит от pH раствора, а не от концентрации используемой кислоты [32, 189]. Так, из альбумина сыворотки крови быка за 18 час при 100° и pH 2,14 выделяется 44% остатков аспарагиновой кислоты в виде аминокислоты, в то время как при pH 3,15 освобождается всего 26% остатков кислоты [189]. При экстракции эластина 0,25 М щавелевой кислотой при 100° был получен растворимый белок единственной выделенной свободной аминокислотой оказалась аспарагиновая кислота [235]. Однако присутствие в продукте реакции пептидов с короткой цепью и результаты определения концевых груМп [24, 234] указывают на значительную степень гидролиза и других пептидных связей. Исследования, проведенные на модельных соединениях [73], позволили сделать вывод о лабильности связей остатков серина и треонина. Применение описанного выше метода гидролиза для исследования цепи А окисленного [c.226]

    Конформационные свойства нерастворимых белков можно иногда определить методом дифракции рентгеновских лучей, однако во многих важных областях приходится обходиться косвенными методами. Эластин — в значительной степени поперечно сшитый и нерастворимый белок эластичных волокон соединительной ткани, имеет растворимый предшественник (тропеластин), состоящий из длинной полипептидной цепи с повторяющейся последовательностью (-L-Val-L-Pro-Gly- -Val-Gly-)я. Методом ЯМР изучены модельные пептиды, имеющие близкую последовательность, и при этом показана четкая тенденция к образованию р-витка второго рода. Защищенные модельные пептиды В0С-01у- -Уа1-01у-0Ме, НСО- ( -Уа1- -Рго-01у-С1у) - -Уа -ОМе, Bo - -Val-L-Pгo-Gly-L-Уа1-С1у-НН2, использованные в этих исследованиях, имели, как показано, 11-членное, образованное водородной связью кольцо ( -поворот, см. рис. 23.7.6) [6], р-поворот второго рода [53] и сетку водородных связей, включающую два 10-членных цикла и один 7-членный цикл, как показано в (2) [54]. [c.440]

    Последовательность аминокислотных остатков в полипептид-,ной цепи называется ее первичной структурой. Определение пер.-вичной структуры производится путем частичного гидролиза белка с помощью специфических протеаз, катализирующих расщепление пептидной связи лишь между определенными остатками. Так, трипсин атакует лишь те пептидные связи, которые образованы СО-группами остатков основных аминокислот — Apr или Лиз. В результате образуется смесь коротких полипептидных цепей, олигомеров. Такие короткие цепи называются пептидами. Их исследование производится посредством химических и физико-химических методов (хроматография, масс-спектроскопия). Воздействуя другим ферментом, можно разрезать белок по другим связям, получить смесь других пептидов. N- и С-конце-вые остатки белка (см. стр. 68) определяются в результате их химической модификации, предшествующей частичному гидролизу. Зная строение пептидов, полученных при специфическом расщеплении различными ферментами, можно установить первичную структуру белка. Допустим, что белковая цепь имеет структуру [c.73]

    На следующем этапе исследования белок подвергают ферментативному гидролизу на пептиды, например под действием трипсина, химотрипсина и пепсина. Разделение пептидов осуществляют с помощью хроматографии и электрофореза на бумаге. Затем, пользуясь ДНФБ-методом, определяют аминокислотную последовательность, начиная с Ы-конца. [c.289]

    Принцип метода. Если исследуемый белок или пептид, растворенный в концентрированной НС1, инкубировать при 37°С в течение 72—96 ч, то происходит их частичное разрушение. В полученном гидролизате среди прочих продуктов расш,епления преобладают ди-и трипептиды, т. е. при гидролизе происходит расш,епление относительно небольшой части пептидных связей. [c.167]

    Уменьшение количеств белков и пептидов, необходимых для анализа их структуры, является одной из центральных проблем, стоящих перед исследователями. С целью ее решения ведется поиск новых методов изучения структуры, в частности более чувствительных способов идентификации производных аминокислот (см. с. 61). Один из перспективных подходов заключается в широком использовании радиоактивных методов анализа. В ряде лабораторий при деградации пептидов в секвенаторе применяется радиоактивный или С-ФИТ1Д. Можно вводить радиоактивную метку непосредственно в анализируемый белок. Для многих белков это достигается добавлением радиоактивно меченных аминокислот непосредственно в питательную среду, на которой выращивается культура, являющаяся источником исследуемого белка. Таким же путем оказывается возможным радиоактивно метить белок избирательно по определенным аминокислотным остаткам. Если белок, радиоактивно меченный, например, по остаткам лейцина, анализировать с помощью секвенатора, то простое измерение радиоактивности экстрактов, содержащих анилинотиазолиноны, позволяет безошибочно определить, в каких положениях полипептидной цепи в N-концевой области белка расположены остатки лейцина (рис. 31). Аналогичным образом можно определить положение и других аминокислотных остатков. Такой прием используется для анализа N-koh-цевой последовательности предшественников белков, доступных лишь в ничтожно малых количествах. Для исследования полной структуры он, однако, не применяется из-за дороговизны и трудоемкости. [c.79]

    Пептиды из нитрованного лизоцима, содержащие остатки нитротирозина, выделяли на сефарозе (Sepharose) с иммобилизованными антителами [45] (рис. 34.16). Антитела получали иммунизацией кроликов и коз комплексом нитротирозин—белок. Антитела выделяли из сыворотки методом аффинной хроматографии на сефарозе с фиксированным нитро-у-глобулином [46]. После десорбции 0,1 М уксусной кислотой антитела конденсировали с сефарозой, получая, таким образом, иммуносорбент. Последний использовали для выделения в одну стадию пептидов с остатком нитротирозина. [c.415]

    Японский химик Акабори (1952) предложил способ определения С-концевого (карбоксильного) остатка аминокислоты. Пептид или белок нагревают 10 ч с безводным гидразином при 105°С. При этом все аминокислоты, кроме С-концевой, превращаются в соответствующие гидразиды, которые отделяют от С-концевой аминокислоты в виде бензилиденовых производных. Применение метода иллюстрируется на примере анализа трипептида  [c.676]

    На основе рентгеноструктурного анализа с высоким разрешением проведено сравнение стереохимических свойств трех типов взаимодействий металл—белок. Для установления структурных и электронных факторов, ответственных за регуляцию активности иона металла, рассмотрены координационные центры металл — лиганд в белках и прослежена связь между молекулярной структурой, стереохимией и электронной структурой и биологической ролью функции иона металла. Гидро( бное взаимодействие порфиринового кольца гемоглобина и миоглобина рассмотрено по данным измерений магнитной восприимчивости, спектроскопии парамагнитного резонанса и исследования поляризационных спектров поглощения монокристаллов. С точки зрения электронной конфигурации (1-орбиталей и геометрии координации обсуждается взаимодействие замещенных ионов металлов в карбоксипептидазе А с карбонильной группой субстратов при гидролизе пептидов. Предполагается, что спектральные изменения, зависящие от pH и наблюдаемые в спектре электронного поглощения, замещенного иона Со(П), каталитически активного в карбоангидразе, обусловлены образованием упорядоченной структуры растворителя вблизи иона Со(И), Корреляция между молекулярной структурой, определенной методами рентгеноструктурного анализа, и электронной структурой координационного центра металл — лиганды, оцененной из спектроскопических данных, указывает на происхождение структурной регуляции реакционной способности иона металла в белках и ферментах. [c.123]

    Высокоэффективным методом разделения является сочетание электрофореза на бумаге с обычной хроматографией. При этом сначала через влажную бумагу, на которую нанесена смесь, пропускают ток высокого напряжения, а затем смесь хроматографируют с помощью подходящего растворителя в направлении, перпендикулярном направлению электрофореза. В результате достигается разделение первоначальной смеси в двух измерениях. Применение такого метода к продуктам ферментативного расщепления белков позволяет получить двухмерную картину, которую называют пептидной картой. Каждый белок дает характерную для него при каждом конкретном способе расщепления картину. Локализацию отдельных компонентов во многих случаях определяют с помощью специфических красителей. При определении аминокислот и пептидов в качестве такого красителя используют, например, нингидрин. Если производится элюция адсорбированных компонентов, то удобнее всего устанавливать их присутствие в элюате спектрофотометрически. Вероятно, наиболее тонким методом разделения белков следует считать иммуноэлектрофорез, при котором эффект достигается за счет использования различий в двух свойствах электрофоретической подвижности и иммунологической специфичности. [c.220]

    Число карбоксильных групп определяется титрованием щелочью в присутствии формальдегида, который блокирует аминогруппу (метод формольного титрования). Число ЫНг-групп можно определить газометрическим методом Ван-Слайка по образованию газообразного азота при взаимодействи аминогруппы с азотистой кислотой (см. 4). О степени гидролиза можно судить и с помощью дилатометрического метода. Он основан на том, что по ходу гидролиза происходит поглощение молекул воды и уменьшение объема гидролизата на 15—20 мл моль. Метод очень чувствителен и тонко регистрирует степень гидролиза. Наконец, о накоплении свободных аминокислот в гидролизате можно судить по интенсивности реакции с нингидрином, которая идет с одновременным участием амино- и карбоксильных групп. Ни белок, ни крупные полипептиды ее практически не дают тетра- н три-пептиды реагируют с образованием слабой окраски. [c.41]

    В результате ферментативного воздействия, определяли последовательно после каждого отщепления Ы-концевого остатка по методу Эдмана (см. гл. 6). При изучении гемоглобина (Брауницер был удачно применен последовательный гидролиз белка разными про-теолитическими ферментами. В этом случае на белок действовали трипсином, а затем полученные пептиды гидролизовали пепсином, специфичность которого значительно повышали, ограничивая время реакции. Методические трудности, связанные с фракционированием сложных гидролизатов и определением полной структурной формулы белка, были преодолены в результате упорного труда нескольких групп ученых. Мы теперь знаем полную аминокислотную последовательность инсулина, глюкагона, рибонуклеазы, гемоглобина, белка вируса табачной мозаики, а также кортикотропина и других пептидных гормонов приближаются к завершению работы по установлению строения папаина, лизоцима, химотрипсиногена, трипсииогена, цитохрома с успешно продвигается изучение некоторых других белков. Изучение последовательности аминокислот проводилось на частичных кислотных гидролизатах или на гидролизатах, полученных при действии различных протеолитических ферментов. Чисто химические методы избирательного расщепления пептидных цепей не имели до сих пор значительного успеха, и эта область остается еще нерешенной задачей пептидно химии. [c.117]

    Еще в 1907 г. Фильд и Тигре [24] изучали электромиграцию коллоидов в агаровом геле, но серьезное применение этого метода к проблемам исследования структуры белка относится к 1946 г. когда Консден, Гордон и Мартин [25] исследовали смесь пептидов из гидролизатов шерсти. Гордон и др. [26] разработали метод для разделений белка в 1 6-ном агаровом геле. Особенностью их прибора является простое приспособление для непрерывного орошения буфером и эффективное охлаждение нижней поверхности тонкой стеклянной пластинки, которая служит опорой агарового геля. Когда используют буферные растворы с ионной силой ниже 0,05, на границе геля со стеклом возникает быстрый электроэндосмос. Другой недостаток метода заключается в трудности удаления из элюпро-ваннык белков последних следов агара. При помощи устройства, показанного на фиг. 86, можно добиться выхода белков из геля. Участок агара, содержащий белок, помещают на полоску влажного целлофана, лежащего в лотке, и концы целлофана приподнимают, оставляя вдоль края геля пространство шириной около 1 см. Белки перемещаются в электрическом поле в буфер, находящийся в пространстве между барьером из целлофана и гелем. [c.258]

    В дальнейших исследованиях Сенгер разработал, а впоследствии довел до полного совершенства, метод, позволивший определять последовательность аминокислотных остатков в полипетидных цепях. При этом он исходил из следующих, сформулированных им на симпозиуме по аминокислотам и белкам в Колд Спринг Харборе в 1949 г. положений Методом динитрофенилирования можно определить природу концевых групп путем идентификации ДНФ-аминокислот (динитрофенил-амино-кислот.—Л. Ш.), полученных при гидролизе ДНФ-белка. Однако, если гидролизовать ДНФ-белок лишь частично, можно получить ДНФ-пептиды, исследование строения которых дает указания относительно природы аминокислот, расположенных в пептидных цепях вблизи концевых групп. ДНФ-пептиды довольно хорошо поддаются отделению от незамещенных пептидов и аминокислот путем экстракции органическим растворителем из подкисленного раствора и хроматографическим фракционированием на силикагеле. Смеси ДНФ-пептидов, полученные этим способом, гораздо менее сложны, чем продукты частичного гидролиза необработанного белка, так как отделяются только пептиды, содержащие М-концевые группы исходного белка. Для дальнейшего упрощения анализа последовательности аминокислот вместо инсулина были взяты очищенные фракции А и В, образующиеся при его окислении и содержащие только по одной концевой группе [37]. [c.133]

    Чтобы удалить белок из плазмы крови, к последней добавляют пикрат [184] или лучше (чтобы избежать потери основных аминокислот) сульфосалициловую кислоту [185], смесь фильтруют, не содержащий белков фильтрат очищают методом катионообменной хроматографии на колонке (50X8 мм) с дауэксом AG50W-X8. Методики очистки образцов мочи перед разделением и количественным определением в нем аминокислот и пептидов описаны в работах [2, 182]. [c.69]

    В химии белка уже достигнут ряд выдающихся результатов. Разработаны современные физико-химические методы исследования аминокислот, пептидов и белков. Установлена первичная структура некоторых белковых ферментов и гормонов, таких, как адренокортикотропный гормон, инсулин, рибонуклеаза, миоглобин, гемоглобин, цитохром с, лизоцим, химотрипсиноген, белок вируса табачной мозаики и других. Успешно развиваются методы синтеза биологически активных белков и пептидов. В 1963 г. осуществлен синтез первого высокомолекулярного белка гормональной природы — инсулина, а в 1969 г. — синтез фермента р1[бонуклеазы (124 аминокислотных остатка). Изучена пространственная структура миоглобина, гемоглобина, лизоцима, химотрипсина, карб-оксипеитидазы А, рибонуклеазы и других белков. Эти достижения помимо их высокой научной ценности имеют громадное практическое значение для медицины, сельского хозяйства и ряда отраслей промышленности. [c.18]

    Фенилизотиоцианатный метод (ФТЦ-метод). В 1950 г. Эдман предложил использовать фенилизотиоцианат для получения производных пептидов по аминогруппе. На пептид или белок в водно-ди-оксановой или водно-пиридиновой среде (pH 8—9) действуют фенилизо-тиоцианатом. Образующееся при этом производное тиомочевины (I) [c.73]

    Не меньшей популярностью пользуется в настоящее время и метод электрофореза в полиакриламидном геле. Добавляя к раствору акриламида, налитому в стеклянные трубки, различные количества мономеров (например, метиленбисакриламид, этилендиакрилат), образующих в процессе полимеризации поперечные сшивки, можно получить гели с различной степенью связанности [137, 404]. Устойчивость к денатурирующим растворителям, например к 8 М раствору мочевины или 1 %-ному раствору додецилсульфата натрия, составляет еще одно важное преимущество этих гелей. При наложении разности потенциалов белки, пептиды, нуклеиновые кислоты и вирусы передвигаются в этих гелях на характерные расстояния, которые зависят главным образом от их молекулярного веса (или веса частицы), а также от степени связанности сшивок геля. Разделившиеся вещества образуют характерные полосы, которые можно выявить либо с помощью методов окрашивания или локального осаждения, либо (в случае разделения радиоактивных веществ) с помощью метода радиоавтографии (см. гл. XI, разд. Б). Разрешающая способность электрофореза в полиакриламидном геле такова, что с помощью этого метода можно обнаружить и идентифицировать приблизительно 37 видов рибосомных белков [508]. То, что разделение белка на многочисленные полосы происходит в силу действительного различия между белками, а не в результате каких-то артефактов, теперь уже не вызывает солшений. Однако известно, что разделяться на отдельные полосы могут не обязательно совершенно различные вещества, но и такие близкие между собой вещества, как, например, один и тот же белок, у которого часть молекул содержит одну лишнюю амидную (— СО — NH2 С00 ) группу, а другая часть — ацетильную (—NH+— NH — СОСН3) группу [136]. С помощью электрофореза в полиакриламидном геле [c.61]

    В кодирующую последовательность можно вносить весьма существенные изменения, например, можно пришивать какую-нибудь ее часть к другому гену, что даст в результате новый гибридный ген, кодирующий комбинированный (составной) белок (fusion protein . Подобные белки часто используются для выявления функций различных доменов белковой молекулы. Известно, например, что большинство ядерных белков содержит особые короткие аминокислотные последовательности, которые распознаются как сигнал для немедленного импорта зтих белков в клеточное ядро. Присоединяя искусственно - методом слияния генов - к какому-нибудь цитоплазматическому белку различные части молекулы ядерных белков, можно идентифицировать эти сигнальные пептиды , ответственные за импорт в ядро. [c.337]


Смотреть страницы где упоминается термин Метод пептидов и белков: [c.229]    [c.386]    [c.393]    [c.25]    [c.267]    [c.210]    [c.221]    [c.39]    [c.302]    [c.81]    [c.127]    [c.69]    [c.386]    [c.306]    [c.245]    [c.19]    [c.27]   
Проблема белка (1997) -- [ c.219 , c.220 , c.221 , c.222 , c.223 , c.224 , c.225 , c.226 , c.227 , c.228 , c.229 , c.230 , c.231 , c.232 , c.233 , c.234 , c.235 , c.236 , c.237 , c.238 , c.239 , c.240 , c.241 , c.242 , c.243 , c.244 , c.245 , c.246 , c.247 , c.248 ]

Проблема белка Т.3 (1997) -- [ c.219 , c.220 , c.221 , c.222 , c.223 , c.224 , c.225 , c.226 , c.227 , c.228 , c.229 , c.230 , c.231 , c.232 , c.233 , c.234 , c.235 , c.236 , c.237 , c.238 , c.239 , c.240 , c.241 , c.242 , c.243 , c.244 , c.245 , c.246 , c.247 , c.248 ]




ПОИСК







© 2024 chem21.info Реклама на сайте