Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение с применением газообразного кислорода

    Другое важное применение масс-спектрометрии, основанное на использовании изотопов, состоит в исследовании обменных реакций с участием соединений, содержащих нерадиоактивные изотопы. Для определения скорости обмена изучают во времени содержание изотопа в продукте превращения меченого исходного вещества. Продукт или исходное соединение можно разложить до газообразного вещества, содержащего метку, и из масс-спектра получить изотопное отношение. Эти вещества можно также исследовать непосредственно, и из анализа изменений в спектре различных фрагментов можно установить местонахождение и количество метки. Определяя, какие пики в спектре изменяются при внедрении изотопа, можно выявить части молекулы, участвующие в обмене. С помощью метки и масс-спектрального анализа было показано, что эфирный кислород в продукте реакции метанола с бензойной кислотой принадлежит метанолу  [c.324]


    Определение с применением газообразного кислорода [c.84]

    Всего сказанного вполне достаточно, чтобы показать, как дейтерообмен на поверхностях катализаторов позволяет обнаруживать различные пути гетерогенных реакций. Следует отметить, что применение дает не менее ценную информацию, особенно при определении той роли, которую атомы кислорода кристаллической решетки играют в процессах хемосорбции и катализа на новерхностях различных окислов. Часто каталитический обмен между газообразным кислородом и, скажем, водяным паром на поверхностях твердых окислов изучался главным образом для выяснения именно процесса обмена [438—442]. Однако в последнее время объектом особенного внимания стали две легко катализируемые окислами металлов реакции — разложение закиси азота [443] и окисление окиси углерода газообразным кислородом [443—445]. [c.138]

    Определение углерода и водорода. Наиболее широко применяемым методом микроаналитического определения углерода и водорода является метод Прегля. По этому методу пары вещества окисляют, пропуская их в смеси с кислородом через нагретый до 750° слой окиси меди и хромата свинца, помещенный в трубку для сожжения. Двуокись углерода и вода улавливаются в поглотительных аппаратах и определяются по привесу. Продукты окисления других элементов задерживаются находящимися в трубке для сожжения поглотителями (серебро и двуокись свинца). Менее широкое применение получил метод каталитического сожжения в этом случае вместо окиси меди и хромата свинца в трубке для сожжения находится платиновый контакт, и окисление происходит только за счет газообразного кислорода. [c.33]

    Метод кондуктометрии был с успехом применен также для непрерывного определения малых (до 4%) количеств метана в конвертированном природном газе [19]. Метод состоит в последовательном удалении из газовой пробы СО2 и СО, окислении СН4 в СО2 газообразным кислородом и определении образующейся СО2 методом кондуктометрического титрования. [c.220]

    Перейдя к вопросу об определении атомных весов, Берцелиус писал Одним из наиболее простых методов для определения относительного веса атомов является метод, основанный на взвешивании тел в газообразном виде с надлежащей точностью и сравнении удельных весов [91, т. 7, стр. 1]. Далее он, однако, указывал на ограниченность данного метода, в связи с тем, что число газообразных веществ ограничено, а также в связи с большими практическим трудностями, свя-занны.ми с измерением объема и определением веса газообразных веществ. Берцелиус выдвигал общий метод определения атомных весов на основе точных анализов атомного состава кислородных соединений данного элемента. Но, как мы уже видели, установление атомного состава веществ прямо или косвенно связано с применением объемных законов Гей-Люссака в их атомистической интерпретации. В конечном счете можно сказать, что в основе атомных весов всех элементов, согласно системе Берцелиуса 1826 г., лежит объемная теория. В частности, большое влияние на установление Берцелиусом атомных весов и химических формул оказало пр-из-нание для воды формулы НгО. Это привело к тому, что несмотря на то, что его формулы окислов большинства металлов совпадали с формулами Дальтона и других ученых, однако атомные веса этих металлов оказались более близкими к современным, ибо он исходил из 0=16 (если взять Н=1.— М. Ф.), а не 0 = 8. Здесь необходимо подчеркнуть, что немалую роль в признании Берцелиусом ряда азота сыграла, очевидно, формула воды НгО, которую он признавал еще в 1818 г., ибо это было наглядным доказательством существования соединений типа КгО Если считать, что молекула воды состоит из одного атома кислорода и двух атомов водорода, тогда обе теории (корпускулярная теория и теория объемов.— М. Ф.) становятся тождественными, отличаясь друг от друга только в отношении представлений об агрегатном состоянии ,— писал Берцелиус [24, стр. 55]. [c.141]


    Способы решения уравнения (124) зависят как от назначения установки (для получения газообразного кислорода, для получения жидкого кислорода и т. п.), так и от построения технологической схемы (с двумя детандерами, с одним детандером и т. п.) [55]. В ряде случаев целесообразно уравнения теплового баланса решать лишь для теплой части теплообменных аппаратов, ограниченной сечением, где разность температур между потоками минимальна. При давлениях воздуха ниже критического АГт.п наблюдается обычно в сечении начала конденсации воздуха. Такой способ расчета исключает необходимость применения итерационных методов [14], связанных с определением температуры обратных потоков в сечении отбора воздуха на детандер среднего давления. [c.172]

    Электрохимические элементы, в которых химическая энергия определенных металлов непосредственно преобразуется в электрическую, нашли очень широкое применение. Это батарейки для карманных фонариков и аккумуляторы их к.п.д. близок к 100%. Если вместо металлов взять обычные топлива, т. е. горючие материалы, и превратить их потенциальную энергию в электрическую, то это и будут так называемые топливные элементы. Принцип их действия аналогичен принципу действия электрохимических элементов. Как и в любой электрохимической системе, в топливных элементах имеются электроды. Однако электроды топливных элементов не участвуют в процессе выработки энергии они служат катализаторами, не изменяясь в ходе работы элемента, и не ограничивают срок службы элемента. На аноде происходит окисление топлива, непрерывно подаваемого к электродам, а на-катоде-восстановление непрерывно поступающего окислителя (обычно газообразного кислорода). Благодаря этому создается разность потенциалов, и при замыкании цепи по ней начинает течь электрический ток. В лабораторных условиях экспериментальные топливные элементы имели К.П.Д. 80-90%. [c.168]

    Выдача газообразного кислорода из блока разделения воздуха низкого давления под значительным избыточным давлением энергетически менее экономична по сравнению с выдачей по первому способу, так как связана с необходимостью компенсировать холодопотери, возникающие при газификации жидкого кислорода под давлением. В то же время работа по второму способу имеет ряд преимуществ, которые при определенных условиях могут сделать целесообразным его применение. [c.202]

    Барий, несмотря на низкий потенциал возбуждения 2,24 эв, относительно трудно возбуждается в пламени смеси ацетилена с воздухом, что, по-видимому, связано с большой величиной константы образования ВаОН (степень диссоциации в пламени ацетилена всего 0,21%). С другой стороны, резонансная линия бария 553,5 ммк совпадает с молекулярной полосой СаОН с максимумом при 554 ммк и мало пригодна для определения бария. Поэтому при определении бария используют либо линии ионизированного атома бария с длинами волн 455,4 мм.к 2,72 эв) и 493,4 ммк (2,51 эв), достаточно интенсивные лишь в горячих пламенах, получаемых с применением кислорода, либо молекулярные полосы газообразной гидроокиси или окиси. К числу последних относятся две системы полос первая — с длинами волн 790—890 ммк и вторая — с длинами волн 450—790 ммк. Максимумы молекулярных полос в инфракрасной части спектра находятся при длинах волн 820 и 870 ммк, причем излучение при длине волны 870 ммк более интенсивно. В видимой части спектра максимумы находятся при длинах волн 487, 512, 524 и 536 ммк. [c.250]

    Кислород почти по всем своим физическим свойствам (теплопроводности, скорости звука, рефракции и др.) не выделяется резко среди обычных газообразных спутников его (азота, аргона и др.), встречающихся в промышленных установках. И только по своей магнитной восприимчивости кислород отличается от других газов. Парамагнитные свойства кислорода (см. табл. 3) используют в газовом анализе для создания газоанализаторов для быстрого определения содержания кислорода в газовых смесях физическим путем, без применения химических реактивов. Приборы для магнитного анализа газовых смесей на кислород построены на различных принципах на измерении силы, смещающей парамагнитный газ к центру неоднородного магнитного поля на оценке степени охлаждения нагретой проволоки за счет конвекционных токов, возникающих по закону Кюри-Ланжевена в любом парамагнитном газе, окружающем [c.233]

    Кондуктометрический метод применен для прямого микроопределения кислорода в органических соединениях [52, 53]. Определение основано на разложении вещества в атмосфере инертного газа и последовательном превращении кислорода сначала в окись углерода, а затем в двуокись. Методика определения [52] заключается в том, что органическое вещество подвергают пиролизу в атмосфере азота или аргона. Газообразные продукты пиролиза пропускают над слоем платинированной сажи, нагретой до 900 °С, где кислород количественно превращается в окись углерода. Затем СО окисляют до СОг над окисью меди при 300 °С. Двуокись углерода поглош,ают в электролитической ячейке, наполненной [c.27]


    При изучении термохимии неорганических соединений в последние годы ученые разных стран иногда применяют реакции хлорирования, фторирования, нитрирования и т. д. Эти методы во многом сходны с методом определения теплот сгорания в кислороде и обычно осуществляются с использованием подобной аппаратуры (например, в калориметрических бомбах). Применение таких газообразных реагентов, как хлор, фтор, азот, позволяет значительно увеличить число химических реакций, доступных для экспериментального изучения. Это дает возможность определять энтальпии образования многих соединений, для которых провести эти определения другими методами было невозможно или же крайне затруднительно (фториды, бориды, нитриды, хлориды и т. д.). В Советском Союзе в последнее время в ряде случаев была успешно применена методика определения теплот реакций неорганических веществ с хлором и азотом в калориметрических бомбах. [c.318]

    Кроме указанных металлических катализаторов часто применяют оксиды, например, СиО. Д При сожжении антрацена, политетрафторэтилена, гексахлорбензола, ткомочевины при определении в них углерода, водорода и азота в качестве катализатора рекомендуется применять ЗпОг. Д Оксиды отдают свой кислород частично окисленным фрагментам, которые затем дополнительно окисляют кислородом. Такие оксиды подробно рассмотрены Е разд. 5.21, поскольку они сами применяются как окислители (без применения газообразного кислорода). Некоторые особенности их практического применения обсуждаются в монографиях по органическому элементному микроанализу, например в [5.739]. Многие сведения по методам окисления в органическом микроанализе обобщены в обзоре [5.739а I. [c.178]

    Источником давления, способного разрушить полностью герметизированный НК аккумулятор, является кислород, образующийся на положительном электроде на стадии заряда. Образования водорода при заряде кадмиевого электрода не происходит, поскольку отрицательная активная масса находится в избыточном количестве по отношению к активной массе положительного электрода. Основное условие герметизации заключается в осуществлении замкнутого кислородного цикла, при котором весь газообразный кислород адсорбируется на поверхности кадмиевого электрода и электрохимически восстанавливается до ОН- по реакции О2 + 2НгО + 4е40Н-. Эффективный доступ кислорода к кадмиевому электроду обеспечивается минимальным межэлектродным расстоянием, применением тканевых (капрон) или нетканых (полипропилен) газопроницаемых сепараторов, а также снижением до определенных пределов объема электролита. Стальной корпус герметичного аккумулятора способен выдержать временное повышение давления в том случае, если по каким-либо причинам (превышение зарядного тока, по- [c.228]

    Медь (I). О применении одновалентной меди в кулонометриче-ской бромометрии говорилось выше [388, 398, 400, 402, 410, 4501. Этот титрант генерируют в солянокислых растворах с концентрацией < 0,5 М НС1 путем восстановления ионов на платиновом катоде. Конечную точку в титрованиях с участием одновалентной меди определяют в большинстве случаев биамперометрически с двумя платиновыми электродами, а иногда потенциометрически [475, 4761. Описаны методы определения меди, железа [477— 479], хрома и ванадия [4801, золота [481], брома [482] и газообразного кислорода [483], основанные на реакции восстановления электрогенерированной медью указанных окислителей или промежуточных компонентов, образующихся в системе в результате взаимодействия определяемого соединения с вводимым в реакционную среду дополнительным реагентом (например, Вг при определении броматов). [c.58]

    Различные варианты кулономегрического анализа используются для решения разнообразных частных задач аналитической химии, в том числе технического анализа. Известен ряд модификаций метода определения влаги, основанного не на применении реактива Фишера, а на количественном электрохимическом разложении воды, поглош,аемой различными сорбентами [289, 469— 474, 598—601]. Кроме того, описаны методы определения непредельных соединений путем гидрирования их электрогенерированным водородом [602—605], что можно с успехом применить для решения специфических задач органического синтеза. Разрабо таны также способы определения газообразных кислорода, водорода и других газов [606—612]. С помощью кулонометрии давно уже определяют толщину металлических покрытий [53, 613— 622], а также анализируют коррозионные и окисные пленки на различных металлах и сплавах, в том числе на олове [623—627], алюминии [628], меди [629—633], железе (сталях) [634] и других металлах [635]. [c.70]

    Предложено много путей промышленного применения соединений Со(1П), самый важный — использование их в качестве катализаторов для разнообразных реакций. Алкилароматические соеди-. нения, например толуол или бензол, окисляются в жидкой фазе газообразным кислородом или воздухом до альдегидов или кпслот в присутствии ацетилацетоната Со (III). Скорость реакции периодически увеличивают путем прибавления к системе неорганического сорбента, AI2O3 или кизельгура это удваивает также и выход Ацетилацетонат кобальта (III) и галогениды алюмннийалкила катализируют полимеризацию бутадиена, давая полимеры с узким распределением молекулярных весов, если катализатор выдерживается в течение определенного времени до начала полимеризации ". Утверждают, что по крайней мере на 93°/о образуется цис-структура ". Ацетилацетонат Со(1И) особенно интересен как компонент растворимой каталитической системы для стереоспецифической полимеризации диенов (стр. 363). Эта же каталитическая композиция была исследована для сополимеризации бутадиена и изопрена в интервале температур от —20 до - -50°С. Вместо алюминиевых соединений как сокатализатор был использован также амилнатрий. Полимеризацию бутадиена проводили при 20° С и давлении 1,5 ат в растворе пентана в течение 20 ч .  [c.318]

    Кондуктометрический метод был применен для непрерывного определения метана (до 4%) в конвертированном природном газе [28]. Из анализируемого газа удаляли предварительно СО и Og, затем водород и метан окисляли в колонке с окисью меди при 760° с добавкой газообразного кислорода. Пройдя холодильник, где конденсировалась рода, газ попадал в электролитическую ячейку. Для поглощения Og применяли 0,04 к раствор NaOH. [c.345]

    Окислительная минерализация пробы. Окислительная минерализация пробы, на которой основано определение С, Н, N и 5, постоянно совершенствовалась. Метод сожжения в пустой кварцевой трубке, предложенный Белчером [30] и развитый Коршун [31, 32] и другими исследователями, не нашел широко-го применения в автоматических приборах, несмотря на види-мую его перспективность во многих отношениях. Причина за-ключается в том, что сожжение в ненаполненной трубке не обеспечивает выполнения основного требования — мгновенного и полного сожжения пробы. Для обеспечения этого требования кроме газообразного кислорода в зоне окисления блока разложения и в виде добавки к навеске были использованы катализаторы и окислители, традиционно используемые в классическом органическом элементном анализе и рассмотренные в разд. 1.1.1. СиО, С03О4 и ПТРПС, нашли применение при анализе в байпасной системе в атмосфере чистого кислорода или гелия при наличии достаточного количества донора кислорода и катализатора [48]. [c.17]

    Если же материал не может гореть или детонировать при определенных параметрах кислорода, но чувствителен к механическому удару, то применение такого материала в данных условиях не представляет какой-либо опасности (воздействие механического удара не может привести к загоранию или детонации). Например, при изучении вопроса о допустимом содержании масла в минеральной вате, используемой для теплоизоляции блоков разделения воздуха [29], было показано, что при содержании в ней 0,457о масла П-28 по вате не может распространяться детонация или горение, т. е. она безопасна в жидком и газообразном кислороде при давлении 0,1 МПа. Эта цифра (0,45%) была принята в качестве предельно допустимой нормы безопасного содержания органических примесей в минеральной вате, используемой для изоляции воздухоразделительных установок, несмотря на то, что при такой концентрации масла минеральная вата чувствительна к механическому удару в жидком кислороде. [c.151]

    Для изучения вопроса о том, насколько температура возгорания углей может характеризовать оклонность их к самовозгоранию, был разработан точный метод определения температуры возгорания в приборе Курпакова. Неточность применявшихся ранее методов в основном обусловлена применением в качестве окисл ителя газообразного кислорода. Чтобы устранить этот недостаток, газообразный кислород был заменен тверды.м окислителем, что дало возмож-ность получить резко выраженные характерные точки начала окисления для разных углей. [c.194]

    Значительно более простой в аппаратурном отношении метод газохроматографического определения С — Н был разработан Фогелем и Куатропе (1960). В противоположность описанным выше методам при этом не требуется применения системы ловушек для выделения продуктов сгорания и нет необходимости превращать воду в ацетилен. Сжигание проводят в бомбе в атмосфере кислорода, и газообразные продукты могут дозироваться из бомбы непосредственно в газохроматографическую аппаратуру. Прямой анализ СО2 и Н2О при применении кислорода в качестве газа-носителя возможен на колонке, заполненной диатомитом, содержащим додецилфталат. При этом вода дает отрицательный пик, хорошо пригодный для расчетов путем планиметрического определения площади пика. Этот очень простой метод позволяет проводить анализ за 17 мин. Троекратное определение ири очень хорошей воспроизводимости и точности результатов занимает лишь 40 мин. [c.252]

    Определив опытным путем при Рн и 298° К, можно вычислить активность ионов водорода и pH в исследуемом растворе. В случае применения водородного электрода при электрохимических измерениях необходимо тщательно очищать водород от различных примесей, особенно от HjS и HgAs, которые отравляют поверхность платины и тем самым препятствуют установлению равновесия Hg 2Н + 2ё, а также от кислорода, который может непо средственно соединяться с водородом на поверхности платины, нарушая равновесие. Необходимо точно измерять парциальное давление водорода J°h, (оно находится по общему давлению и давлению водяного пара при данных условиях). Кроме того, газообразный водород должен поступать к платиновой проволоке с определенной скоростью. Все это делает водородный электрод громоздким и неудобным при электрохимических измерениях. Поэтому чаще применяется более простой каломельный электрод, обладающий устойчивым и отлично воспроизводимым потенциалом. [c.294]

    Разложение в токе влажного кислорода в платиновой трубке, в трубке с платиновой набивкой при 900—1250° С [5] или в трубке с кварцевым наполнителем [6—8] (методика № 4). Газообразные и летучие жидкие фторуглероды разлагают, пропуская их с азотом или воздухом в смеси с кислородом [6]. При сожжении серусодержащих соединений образуется сульфат, который может быть определен в виде Ва804. С целью восстановления оксифторида кремния и удаления абсорбированного фторида кремния трубку после сожжения рекомендуют продувать последовательно кислородом, азотом, водородом и снова азотом [7]. Практически фторорганические соединения сжигают в кварцевой аппаратуре с применением обычного элементарного анализа, т. е. с одновременным определением углерода, водорода, азота, хлора и фтора. Это возможно вследствие того, что 51р4 проходит через СиО без изменения, в то время как все остальные элементы окисляются [3]. См. также методы пиролиза. [c.21]

    После создания атомной теории,— пишет Дюма в только что упомянутой статье,— приобретали новое и все большее значение результаты, полученные исходя из этой замечательной концепции они стали основой всех химических исследований, которые требуют определенной точности. Все же самые недавние попытки, относящиеся к абсолютным весам атомов, привели к слишком неясным результатам, чтобы считать такую теорию окончательной... Поэтому я был вынужден провести серию опытов для определения атомного веса большого числа тел через их плотность в газо- образном или парообразном состоянии. В таком случае остается прибегнуть только к одной гипотезе, и в этом отношении все физики согласны между собой. Эта гипотеза состоит в предположении, что во всех упругих флюидах при одних и тех же условиях молекула находятся друг от друга на одинаковых расстояниях, иными словами в одинаковом числе Самый непосредственный результат такой постановки вопроса уже всесторонне -обсуждался Ампером, но, по-видимому, в практической работе химиков, исключая Гей-Люссака, он не учитывался. Этот результат сводится к представлению о молекулах простых газов как о частицах, способных к дальнейшему делению, которое происходит в момент соединения и варьируется в зависимости от характера процесса... В системе, принятой Берцелиусом, образование соединений происходит по общей схеме, которая состоит в том, что их атомы изображаются как бы возникшими в результате сочетания целого числа простых атомов. Так, по этой системе вода состоит из двух атомов водорода и одного атома кислорода, хлористоводородная кислота — из одного атома хлора и одного водорода, тогда как, если следовать упомянутой идее о конституции газов, следовало бы считать воду состоящей из одного атома водорода и половинм атома кислорода, а хлористоводородную кислоту — из половины атома хлора и половины атома водорода. Формула соединения должна бы, таким образом, всегда изображать то, что входит в состав этого тела в газообразном состоянии. Надо признать, что знания, которыми мы обладаем в этом отношении, делают трудным применение этого правила . [c.187]

    Качественный и количественный спектральный эмиссионный газовый анализ могут быть в настоящее время использованы главным образом для определепия редких газов и таких газообразных элементов, как азот, водород, кислород. Говоря о качественном анализе, имеют обычно в виду по существу полуколи-чественный анализ, поскольку практический интерес представляют лишь такие качественные определения, которые позволяют дать хотя бы ориентировочные представления о возможных концентрациях компонентов в газовой смесп. Качественный и количественный спектральный газовый анализ может быть применен не только для оиределения газообразных элементов, но и некоторых газообразных соединений. Однако в сложных смесях сильно сказывается влияние одних компонентов на другие в отношении интенсивностей линий спектра. Кроме того, следует учесть, что при разряде пропсходят химические процессы, в результате чего появляются новые соедипения и иопы, которых не было в исходном газе. Поэтому практическое значение спектральный газовый анализ имеет сейчас главным образом для определепия малых количеств или концентрации редких газов, для определения состава бинарных смесей редких газов и примесей некоторых компопентов — Нд, N3 п др. — к какому-либо редкому газу. Возможности аналпза трехкомпопентных смесей ограничены, и он может быть проведен лишь в отдельных случаях. Еще труднее проводить анализ более сложных смесей. [c.274]

    Чёский метод в данном случае удобнее химичёскйх Методов определения окислов азота, так как при его применении можно ограничиться небольшими объемами исследуемого воздуха кроме того, определение окислов азота методом полярографии может быть проведено и в тех случаях, когда в воздухе присутствуют другие, кроме кислорода, газообразные вещества, мешающие определению окислов азота с помощью обычных химических методов анализа. Работу проводили на по-лярографе завода Геологоразведка с зеркальным гальванометром чувствительностью 5,4-10 а-мм/м, смонтированным вне прибора. [c.225]

    Описано определение в полипропилене ненасыщенных связей по реакции с однохлористым иодом [33], а также по присоединению газообразного брома [34], гидроперекисей по реакции активного кислорода с двухвалентным железом в присутствии фосфорной кислоты [35], определение в модифицированном полипропилене содержания стирола с применением турбиметрического титрования [36]. [c.239]

    Область применения пористых полимеров в газовой хроматографии непрерывно расширяется. На этих сорбентах осуществляется количественный анализ кетонов [1], анализ водных растворов формальдегида [2], количественный анализ летучих жирных кислот в водных растворах [3], определение примесей следов воды в углеводородах [4], определение Hg, Og, N3, СО, СО2, H2S, NHg, Н2О и углеводородов С —С5 в очищенных газах [5], разделение метана и дейтерометана [6], определение микроколичеств ацетилхолина [7], анализ газообразных продуктов пиролиза нитроалканов [8], анализ атмосферы Марса [9], анализ алифатических аминов [10], разделение ( ористого карбонила и Og [11], разделение низкомолекулярных фторугле-родов и продуктов их термического окисления [12], определение аргона, кислорода и азота [13], разделение N3, О , Аг, СО, СО2, HjS и SO2 [14] и др. [15]. [c.56]

    Оксид азота может быть определен в присутствии диоксида. Дитц [46] описал метод обработки молекулярных сит 5А, позволяющий устранить образование хвостов при разделении на них оксидов азота. Колонку из нержавеющей стали длиной 1,8 м и наружным диаметром 6 м,м наполняли ситом 5А и нагревали до 300°С в вакууме в течение 20 ч для удаления воды, затем заполняли газообразным гелием и при 300°С медленно пропускали газообразный оксид азота в течение 1 ч. Затем колонку охлаждали, не прерывая ток оксида азота, продували газообразным гелием для удаления N0, после чего пропускали через колонку кислород для превращения сорбированного оксида азота в диоксид. Диоксид азота, не элюировавшийся из колонки, не мешал определению оксида азота.-"Возможно, что при применении более чувствительного детектора в сочетании с описанной обработкой колонки, а также при использовании колонки для предварительного концентрирования удастся определять оксид азота в воздухе в концентрациях порядка 10 %. Во всяком случае, описанный метод обработки колонки является перспективным. Применение более чувствительного детектора позволит определять еще меньшие концентрации оксида азота. [c.121]


Смотреть страницы где упоминается термин Определение с применением газообразного кислорода: [c.4]    [c.223]    [c.75]    [c.174]    [c.70]    [c.40]    [c.225]    [c.159]    [c.161]    [c.48]    [c.197]    [c.611]    [c.252]    [c.51]   
Смотреть главы в:

Определение органических загрязнений питьевых, природных и сточных вод -> Определение с применением газообразного кислорода




ПОИСК





Смотрите так же термины и статьи:

Кислород газообразный

Кислород определение

Кислород применение



© 2025 chem21.info Реклама на сайте