Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Промышленное получение важнейших неорганических веществ

    ХОД электроэнергии при промышленном электролитическом получении водорода и кислорода. Реакция образования кислорода играет важную роль практически во всех анодных процессах при электролизе водных растворов и в первую очередь в реакциях электроокисления неорганических и органических веществ. Однако механизм анодного выделения кислорода до сих пор не совсем ясен. [c.421]


    Глава 20. Промышленное получение важнейших неорганических веществ [c.255]

    Задачи и упражнения 241 Глава 20. Промышленное получение 254 важнейших неорганических веществ [c.1]

    Особенностью и преимуществом электрохимических методов производства перед химическими является сравнительная простота и дешевизна получения ряда продуктов, таких как гидроксид натрия и хлор, щелочные и щелочноземельные металлы, алюминий, пероксидные соединения, различные неорганические вещества высокой степени чистоты, обычно недостигаемой при химических методах их получения. Благодаря возможностям электрохимических технологий сформировалась целая отрасль современной индустрии — электрохимическая промышленность, к наиболее важным задачам которой относится обеспечение народного хозяйства ценными неорганическими продуктами (гидроксидами щелочных металлов, дезинфицирующими растворами, неорганическими окислителями), высокочистыми металлами, химическими источниками тока. [c.5]

    Несколько глав в книге занимают особое положение. Главы 20 и 33 посвящены промышленным способам получения важнейших неорганических и органических веществ. Они наглядно демонстрируют важность теоретических разделов химии для практических нужд общества. [c.3]

    Многие химические процессы, применяемые в промышленности, и главным образом в основном химическом синтезе, основаны на реакциях твердой фазы с газом. К таким процессам относятся, например, получение металлов восстановлением газами, обжиг сульфидных руд, получение основных полупродуктов неорганического синтеза — аммиака, серной кислоты и многих органических соединений методами гетерогенного катализа, а также очистка веществ и выращивание монокристаллов (полупроводниковая промышленность). Очень важно здесь то, что в таких гетерогенных системах концентрация дефектов зависит не только от температуры, но и от равновесия между соответствующими компонентами твердой и газовой фаз. Так, например , состав решетки NiO меняется при увеличении парциального давления кислорода, причем в результате окислительно-восстановительной реакции увеличивается количество ионов О - в решетке и одновременно образуется эквивалентное количество ионов Ni +. В соответствии с требованиями об электронейтральности системы в целом, в решетке появляются катионные вакансии  [c.435]


    В своем развитии промышленность органического синтеза разделилась на ряд отраслей (технология красителей, лекарственных веществ, пластических масс, химических волокон и др.), среди которых важное место занимает промышленность основного органического и нефтехимического синтеза. Термин основной (или тяжелый ) органический синтез охватывает производство многотоннажных продуктов, служащих основой для всей остальной органической технологии. В свою очередь, термин нефтехимический синтез появился в связи с перебазированием технологии органических веществ на нефтяное сырье и в обычном смысле слова (исключая получение неорганических веществ и полимеров) охватывает первичную химическую переработку углеводородов нефтяного происхождения. В этом плане он является частью основного органического синтеза, чем и обусловлено их объединенное название. [c.8]

    Синтез неорганических веществ имеет большое значение. Директивами XXV съезда КПСС предусматриваются высокие темпы развития химии. Химическая промышленность превратилась в важнейшую область, обеспечивающую получение материалов и веществ для всех отраслей промышленности и сельского хозяйства, медицины, играющую огромную роль в производстве предметов быта. [c.4]

    Получение органических соединений из неорганических. Одна ртз многих нолей органической химии состоит в получении полезных органических соединений из дешевых исходных материалов неорганического происхождения. Два особенно важных примера таких последовательных переходов — это промышленное производство метанола и ацетилена. Эти соединения легко превращаются в другие органические соединения с помощью уже приводившихся реакций. Таким образом, многие соединения в конечном счете получаются из неорганических веществ. [c.64]

    Катализ (неорганический и ферментативный) имеет широчайшее распространение в природе и промышленности. В настоящее время с участием катализаторов получают большое количество важнейших для народного хозяйства продуктов (азотистые вещества за счет азота воздуха, серная кислота, искусственный бензин, спирт, искусственный каучук, продукты гидрогенизации жиров, исходные материалы для получения пластмасс и т. д.). Все биохимические процессы, протекающие в живой природе, в основном имеют ферментативный характер. [c.191]

    В своем развитии промышленность органического синтеза разделилась на ряд специфичных отраслей, среди которых важное место занимает промышленность основного органического и нефтехимического синтеза. Подобно основной неорганической химии и технологии, термин основной (или тяжелый ) органический синтез охватывает производство многотоннажных органических веществ, служащих базой для всей остальной органической технологии. Главным объектом основного органического синтеза является первичная переработка пяти видов исходных веществ в другие продукты — различные углеводороды, хлорпроизводные, спирты и эфиры, альдегиды и кетоны, карбоновые кислоты и их производные, фенолы, нитросоединения и амины, т. е. вещества, на которых основано получение всех других органических продуктов. По практическому назначению продукты основного органического синтеза можно подразделить на две главные группы 1) промежуточные продукты для синтеза других веществ в этой же или в других отраслях химической промышленности,- в том числе мономеры и исходные вещества для получения полимерных материалов 2) продукты целевого применения поверхностно-активные и моющие вещества, ядохимикаты и химические средства защиты растений, растворители и экстрагенты, синтетическое топливо и смазочные масла, пластификаторы и т. д. [c.10]

    Начиная с конца XIX в., водород применяется и для получения очень низких температур, а также, что особенно важно, во все большей и большей степени идет на синтез различных ценных ка неорганических, так и органических соединений. Очень большие количества водорода идут на синтез аммиака, для целей ожижения угля, т. е. синтеза бензина и других нефтяных продуктов, для синтеза разнообразнейших органических веществ, например для получения твердых жиров из жидких растительных масел. Для получения ЫНз необходим особенно чистый Нг без примесей СО (допускается примесь СО не более 0,05%), поэтому были разработаны специальные методы очистки водорода. Количество свободного водорода, потребляемого ежегодно химической промышленностью, очень велико и превышает 1 млн. т. [c.13]


    Кислородное перенапряжение составляет значительную долю общего напряжения на ванне по электролизу воды и влияет на расход электроэнергии при промышленном электролитическом получении водорода и кислорода. Реакция образования кислорода играет важную роль практически во всех анодных процессах при электролизе водных растворов и, в первую очередь, в реакциях электроокисления неорганических и органических веществ. Однако механизм анодного выделения кислорода до сих пор остается далеко не выясненным. [c.383]

    Микробиология — наука о живых организмах, имеющих малые размеры и не видимых невооруженным глазом. Задача микробиологии заключается в изучении строения и закономерностей развития микроорганизмов с целью выяснения роли их в процессах превращения веществ, возможности управления этими процессами. Микроорганизмы имеют исключительно важное значение в круговороте веществ в природе. Одни микроорганизмы осуществляют распад сложных соединений в процессе разложения органических остатков, а другие в процессе жизнедеятельности синтезируют органические вещества из простых неорганических соединений (диоксида углерода, атмосферного азота и др.). Некоторые микроорганизмы могут вызывать болезни, а другие используются для лечения ранее не излечимых заболеваний. Микроорганизмы способствуют образованию почв, под их воздействием образуются отложения некоторых полезных ископаемых (например, некоторых видов железных и серусодержащих руд). В нашей стране создана микробиологическая отрасль промышленности, одной из задач которой является получение кормовых белков из отходов нефтеперерабатывающих заводов. [c.198]

    Химико-технологический процесс — это такой производственный процесс, при осуществлении которого изменяют химический состав перерабатываемого продукта с целью получения вещества с другими свойствами. Изменение химического состава достигается проведением одной или нескольких химических реакций, в результате которых получаются целевые продукты, отличающиеся по своему строению и свойствам от исходного сырья. При промышленном осуществлении химико-технологических процессов кроме химических реакций дополнительно требуется использование гидродинамических, тепловых, диффузионных и механических процессов. Поэтому химическая технология базируется йа закономерностях общей и органической химии, физики, механики, процессов и аппаратов химической промышленности и других инженерных дисциплин. Химико-технологические процессы лежат в основе производства многих неорганических и органических соединений и занимают важное место в производстве черных, цветных и редких металлов, стекла, цемента и других силикатных материалов, целлюлозы, бумаги и разнообразных пластмасс. [c.213]

    Существенным преимуществом обратного осмоса перед всеми другими методами очистки сточных вод является одновременная очистка от неорганических и органических примесей, что особенно важно в системах оборотного водоснабжения. Обеспечивается возможность получения наиболее чистой воды, так как мембраны могут задерживать практически все растворенные вещества и взвеси минерального и органического характера, в том числе вирусов, бактерий, микробов и всякого рода других микроформ. Такую очистку воды в настоящее время широко используют при водоподготовке для промышленных целей. [c.220]

    Если английские исследователи основное внимание концентрировали на природных соединениях, например, дубильных веществах, и значительно меньшее — на катионообменных смолах, то исследования, проводимые с 1938 г, РхГ Фарбениндустри, прежде всего были сосредоточены на планомерном синтезе ионообменных смол с целью изменения и расширения их свойств. Многолетние работы с такими промышленными адсорбентами, как активные угли, неорганические гели и гелеобразные обменники сыграли положительную роль в развитии этой новой области исследования и разработке важных способов получения нового типа смоляных студней и гелей. В данной книге мы ограничимся упоминанием важнейших моментов из большого числа проведенных предварительных исследований, более сотни которых нашли отражение в немецких и других иностранных патентах. [c.18]

    Катализ применяется при получении важнейших неорганических продуктов основной хи.мической промышленности водорода, аммиака, серной и азотной кислот. Особенно велико и разнообразно применение катализа в технологии органических веществ, прежде всего в органическом синтезе — в процессах окисления, гидрирования, дегидрирования, гидратации, дегидратации и др. При помонги катализаторов получают основные полупродукты для синтеза высокополимеров. Непосредственное получение высокомолекулярных соединений полимеризацией и поликонденсацией мономеров также осуществляется с участием катализаторов. На применении катализаторов основаны многие методы переработки нефтепродуктов каталитический крекинг, риформинг, изомеризация, ароматизация и алкилирование углеводородов. Жидкое моторное топливо из твердого (ожижение твердого топлива) получают при помощи катализаторов. [c.210]

    Большую отрасль современной химической промышленности составляет электросинтез неорганических и органических соединений. При помощи электрохимических методов могут быть получены водород, кислород, персульфаты, перхлораты, хлор, фтор, щелочи, ади-подинитрил, фармацевтические препараты, перфторированные органические соединения и ряд других веществ, которые или используются затем непосредственно, или являются промежуточными в процессе приготовления различных продуктов. Электролиз воды, при помощи которого разделяются изотоны водорода, используется в процессе получения тяжелой воды. Производство таких важных полимеров, как полихлорвинил и перхлорвинил, в значительной степени базируется на электрохимическом производстве хлора. Промышленные методы обогащения атомного горючего были бы неосуществимы без гексафторида урана, для получения которого необходим продукт электролиза — свободный фтор. Многие процессы, которые осуществляются обычным химическим путем, могут быть реализованы электрохимическими методами, и критерием при выборе того или иного пути служат экономические соображения. [c.12]

    Один из важнейших показателей качества электрофорезных покрытий при их, промышленном использовании — прочность сцепления полимерного осадка с металлом. Она увеличивается с понижением размеров диспергированных частиц вследствие повышения контактируемой площади как между ними, так и между подложкой и осадком. Однако применение частиц слишком малых размеров (радиус 10 см) существенно уменьшает скорость образования,осадка. Поэтому для получения более качественных полимерных покрытий целесообразно использовать частицы размером 0,5—1 мк [52]. Часто д.чя улучшения адгезии электрофоретического покрытия к металлу в состав суспензии вводят пигменты [73--79],, в качестве которых могут быть использованы как органические, так и неорганические вещества (окись цинка, графит, газовая сажа, тальк, мелкоразмолотый шпат, двуокись титана, кремневокислый алюминш и другие). [c.17]

    Чохральский [31] первым применил метод вытягивания для выращивания кристаллов легкоплавких металлов, таких, как олово, свинец, цинк. На фиг. 5.5,г показана схема типичной установки для такого вытягивания. В течение многих лет метод использовался для конгруэнтно плавящихся соединений всех классов, но, вероятно, наиболее широкое его применение лежит в области полупроводников. Тил и Литтл [32] первыми получили монокристаллы германия и кремния, и их работа явилась основой для получения полупроводниковых кристаллов этих веществ с высокими характеристиками для научных и технических целей. Метод вытягивания сегодня занимает важное место в промышленной технологии полупроводников. Нассау и Вэн Ютерт [33] применили метод вытягивания к неорганическим веществам, представляющим интерес как лазерные матрицы, и Нассау в ряде статей [34, 35] описывает способы выращивания и свойства aW02 Nd. Некоторые стороны метода рассмотрены в книге [8]. [c.192]

    Органическая химия определялась вначале как химия соединений, которые образуются живой материей. После открытия в 1828 г. Вёлером возможности получения мочевины, считавшейся типичным органическим веществом, при нагревании неорганической соли цианата аммония, это определение утратило силу, и в настоящее время органическую химию правильнее всего рассматривать как химию углеродсодержащих соединений. Однако название органическая все еще сохраняет силу по той причине, что химия соединений углерода более важна для жизни, чем химия любого другого элемента. В приведенном ниже далеко не исчерпывающем перечне представлены основные виды органических соединений, имеющие важное биологическое или промышленное значение  [c.14]

    Пособие ссставлбнс б ферме справочника и включает подробное описание химических свойств (уравнений важнейших химических реакций, способов получения в ла ратории и промышленности, некоторых физико-химических констант) примерно полутора тысяч неорганических простых веществ и соединений, образованных элементами всех групп Периодической системы. Книга снабжена формульным указателем, который позволяет выявить дополнительно свойства и методы синтеза еще более двух тысяч веществ, не поименованных в рубриках. [c.8]


Смотреть страницы где упоминается термин Промышленное получение важнейших неорганических веществ: [c.62]    [c.16]    [c.113]    [c.23]    [c.82]   
Смотреть главы в:

Химия 2400 задач для школьников и поступающих в Вузы -> Промышленное получение важнейших неорганических веществ

Химия 2400 задач для школьников и поступающих в вузы -> Промышленное получение важнейших неорганических веществ




ПОИСК





Смотрите так же термины и статьи:

неорганических веществ



© 2025 chem21.info Реклама на сайте