Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цезий с мышьяком

    Напишите эмпирические формулы оксидов следующих элементов а) лития б) бериллия в) бора г) кремния д) азота е) мышьяка ж) селена з) рубидия и) стронция к) серебра л) кадмия м) индия н) олова о) сурьмы п) теллура р) цезия с) бария т) золота у) ртути ф) таллия х) свинца. [c.8]

    Растворимость металлов в ртути весьма различна. Наибольшей растворимостью при комнатной температуре обладают таллий и индий (около 50%) растворимостью от 1 до 10% обладают цезий, рубидий, кадмий, цинк, свинец, висмут, олово, галлий от 0,1 до % — натрий, калий, магний, кальций, стронций, барий от 0,01 до 0,1% — литий, серебро, золото, торий от 0,01 до 0,001% — медь, алюминий и марганец. Практически нерастворимы в ртути металлы семейства железа, а также бериллий, германий, титан, цирконий, мышьяк, сурьма, ванадий, тантал, хром, молибден, вольфрам и уран. Для некоторых металлов растворимость в ртути сильно увеличивается с увеличением температуры. Известны амальгамы нерастворимых в ртути металлов эти системы представляют собой коллоидные растворы или взвеси в ртути. В таких амальгамах можно, например, довести содержание железа до [c.306]


    Арсениды рубидия и цезия можно получить при нагревании до 500° С в течение 24 часов смеси рубидия или цезия с мышьяком при четырех-пятикратном избытке металла по сравнению со сте-хиометрическим соотношением компонентов реакции [216]. Примесь металла удаляют обработкой продукта реакции жидким аммиаком, который затем удаляют током нагретого азота. Для окончательной очистки от аммиака арсениды высушивают в глубоком вакууме при 160° С. [c.110]

    При определении следов элементов в арсениде рубидия и цезия мышьяк отгоняют в виде мышьяковистого водорода [144]. При определении в боре примесей 81, Р и Аз основной компонент пробы отделяют отгонкой в виде летучего триметилбората [112]. [c.78]

    Составьте формулы соединений по их названиям гидрид кальция, пероксид водорода, супероксид цезия, хлорид аммония, тетраборат натрия (бура), оксохлорид хрома, гидрид мышьяка (III), дифосфорная кислота. [c.40]

    Олово, рубидий, вольфрам, литий, бор, иттрий, кобальт, свинец, бром, молибден, торий, цезий Скандий, мышьяк, кадмий, бериллий, аргон, гафний, уран, галлий, германий, иод [c.321]

    Отдельные тома серии Аналитическая химия элементов выходят самостоятельно но мере их подготовки. Вышли в свет монографии, посвященные торию, таллию, урану, рутению, молибдену, калию, бору, цирконию и гафнию, кобальту, бериллию, редкоземельным элементам и иттрию, никелю, технецию, прометию, астатину и францию, ниобию и танталу, протактинию, галлию, фтору, селену и теллуру, алюминию, нептунию, трансплутониевым элементам, платиновым металлам, радию, кремнию, германию, рению, марганцу, кадмию, ртути, кальцию, фосфору, литию, олову, серебру, цинку, золоту, рубидию и цезию, вольфраму, мышьяку, сере, плутонию, барию, азоту, стронцию, сурьме, хрому, брому, ванадию, актинию, хлору. [c.4]

    При определении мышьяка в солях цезия и рубидия мышьяк совместно с другими примесями экстрагируют хлороформом в виде [c.96]

    В присутствии свободной соляной кислоты мышьяк не дает кристаллического осадка с раствором хлорида цезия, в то время как сурьма образует характерный кристаллический осадок. [c.328]

    Видно, что определению натрия, калия, рубидия, цезия, меди, кальция, стронция, алюминия, галлия, индия, скандия, лантана, европия, самария, иттербия, титана, сурьмы, ванадия, вольфрама, хрома, хлора, иода, марганца, железа, кобальта, практически не мешают другие элементы. Такие элементы, как серебро, магний, барий, кадмий, ртуть, золото, олово, мышьяк, селен, молибден, бром, никель, можно определять (с учетом вклада мешающего изотопа) по другим его гамма-липиям или другим гамма-линиям определяемых элементов. Серьезными конкурентами являются евроний, скандий нри определении цинка галлий — для кремния рубидий, золото — для германия бром, серебро — для мышьяка  [c.95]


    С точки зрения экономики и экологии вряд ли оправдано использование соединений мышьяка, ртути, ванадия, стронция, цезия, брома, иода, даже если они перспективны в отношении термодинамики. [c.407]

    Катионами могут быть сильно электроположительные металлы, такие как литий, натрий, калий, рубидий, цезий, кальций, магний и т. д. Анионами могут быть комплексы бора, кремния, мышьяка, алюминия, титана, ртути, ванадия, марганца, молибдена, хрома, кобальта, железа, цинка, платины, никеля, лантана и т. д. Отрицательными группами в комплексе могут служить фтор, хлор, бром, иод, кислород, гидроксильная группа нейтральными —алкильная, арильная, карбонильная, гидроксильная группы. Типичные комплексные анионы приведены в следуюш,ем перечне  [c.252]

    Кроме перечисленных выше элементов, в зерне злаков содержится марганец, медь, цинк, бор, алюминий, йод, кобальт, никель, молибден, фтор, селен, бром, титан, олово, мышьяк, литий, ванадий, барий, стронций, цезий, рубидий и многие другие элементы. Многие из этих элементов играют определенную роль как микроэлементы в жизни растений и животных. [c.364]

    Метод пламенной фотометрии широко применяется в аналитической практике для определения кальция при клинических анализах крови [22,166,171,213, 561, 784, 1649] и других биологических объектов [482, 561, 1520], при анализе почв [226, 428, 467, 969], растительных материалов [7, 225, 466, 993, 1522], сельскохозяйственных продуктов [52, 306], природных вод [15851, морской воды [594, 791]. Метод находит применение при определении кальция в силикатах [67], глинах [6, 59], полевом шпате [637], баритах [67], рудах [164, 1136, 13981, а также в железе, сталях, чугунах [326, 1149], ферритах [949], хромитовой шихте [70], основных шлаках [1045], мартеновских шлаках [988], доменных шлаках [1510], силикокальции [1012], керамике [395]. Описаны методы пламенной фотометрии для определения кальция в чистых и высокочистых металлах уране [201, 12011, алюминии [1279], селене [1454], фосфоре, мышьяке II сурьме [1277], никеле [1662], свинце [690], хроме [782] и некоторых химических соединениях кислотах (фтористоводородной, соляной, азотной [873]), едком натре [235], соде [729], щелочных галогенидах [499, 885], арсенатах рубидия и цезия [316], пятиокиси ванадия [364], соединениях сурьмы [365, 403], соединениях циркония и гафния [462, 1278], солях цинка [590], солях кобальта и никеля [1563], карбонате магния [591], ниобатах, тантала-тах, цирконатах, гафнатах и титанатах лития, рубидия и цезия [626], стронциево-кальциевом титанате [143], паравольфрамате аммония [787]. [c.146]

    Эдлофф [134] сообщает о восьми бинарных смесях металлов, которые можно разделить на бумаге, пропитанной неорганическими ионообменниками. Састри и Pao [133] исследовали разделение ио.чоз двух валентных согтояний одного и того же элемента железа, урана, цезия, мышьяка, хрома, ванадия, молибдена и ртути. Кабрал [133] разделял радиоактивные кальций, строн- [c.328]

    Замещая калий на рубидий, аммоиий, цезий, мышьяк, а водород па дейтерий, можно получить ряд изоморфных кристаллов, вследствие чего удается менять температуры перехода и числовые значения коэффициентов пьезоэлектрических и других эффектов. Кристаллы типа КДП особенно ценны не только пьезоэлектрическими, но своими нелинейными оптическилш свойствами (см. 45, явление волнового синхронизма). [c.268]

    Освоение эффекта Мёссбауэра позволило проводить измерения в пределах 15-го знака. Метод основан на взаимодействии в определенных условиях гамма-квантов с атомными ядрами. Возможность использования этого достижения в химическом анализе уже показана на примере определения олова. Теоретически оправдано применение данного метода для аналитического определения следующих элементов железа, никеля, цинка, германия, мышьяка, рутения, сурьмы, теллура, иода, ксенона, цезия, гафния, тантала, вольфрама, рения, осмия, иридия, платины, золота, таллия, многих лантаноидов и актиноидов. Можно ожидать появления приборов, в датчиках которых используется высокая чувствительность твердых веществ к неуловимым следовым количествам реагирующих о ними веществ. Ведь при хемосорбции всего нескольких сотен атомов последних свойства твердого тела заметно изменяются, Сверхвысокочувствитмьными датчиками могут служить некото [c.11]

    Дигидроарсенат рубидия получают либо сплавлением нитрата рубидия с трехокисью мышьяка, взятых в эквимолекулярном соотношении, либо путем нейтрализации водного раствора карбоната рубидия мышьяковой кислотой в присутствии индикатора метилоранжа [1, 4]. Сведений по синтезу дигидроарсената цезия в литературе не имеется. [c.67]

    Нами разработана методика получения днгидроарсенатов рубидия и цезия ос. ч. из металлического мышьяка высокой ЧИСТ0Т1.1 и карбонатов рубидия и цезия ос, ч. [c.68]

    Как уже указывалось, многие гетерополисоединения вольфрама и молибдена нашли практическое применение. В частности, они широко ипользуются в аналитической химии для определения ряда элементов. Так, фосфоромолибдат аммония-магния используется для определения магния, молибдена, фосфора. Для определения кремния, фосфора, германия, мышьяка и церия также применяют соответствующие гетеро-полимолибдаты. Рубидий и цезий определяются в виде кремнемолибда-тов и кремневольфраматов. [c.244]


    Сульфид бария 138 бора 152 висмута 405 галлия 183 германия 244—5 железа 836 индия 190 иттрия 617 кадмия 593 калия 60 кальция 118 кобальта 854 кремния 234 лантана 624 лития 19 марганца 800 меди 561—2 молибдена 778 мышьяка 369—71 натрия 39 никеля 868 олова 254—5 ртути 602 рубидия 74 свинца 269 серебра 571 скандия 610 стронция 128 сурьмы 384—5 таллия 201 углерода 208 фосфора 354—5 хрома 768 цезия 86 цинка 586 Сульфид, гидроаммония 286 бария 139 натрия 40 Сульфид, ди- 837 Сульфид, поли-аммония 287 калия 61 натрия 41 цезия 87 Сульфит 416, 418, 420 Сульфит, гидро- 417, 419, 421 [c.478]

    Ниже рассматриваются соединения рубидия и цезия с неметаллами V и VI групп периодической системы — азотом, фосфором, мышьяком, углеродом, кремнием и германием. Германий выступает в данном случае как кислотообразующий элемент вслед-ствие того, что германиды рубидия и цезия проявляют явно солеобразный характер. Бориды рубидия и цезия неизвестны и вопрос о возможности их существования до настоящего времени не вполне выяснен. [c.107]

    Для обнаружения мышьяка(У) из других микрокристаллоско пических реакций можно отметить образование характерных оранжевых кристаллов при добавлении к исследуемому раствору растворов йодида калия и хлорида цезия [1189], оранжевых кристаллов прн добавлении иодида натрия и X и н о л и н а [898] или характерных кристаллов при добавлении растворов иодида натрия и уротропина (гексаметилентетрамина) Г718]. [c.35]

    Объем ежегодного производства серной кислоты очень велик, и большая ее часть получается путем окисления сернистого газа в серный ангидрид на платиновых катализаторах или на пятиокиси ванадия [121]. Активными катализаторами являются также и другие переходные металлы — вольфрам, палладий, золото и хром, однако они не так активны и стойки, как платина. Другие катализаторы подразделяются [140] на низкотемпературные, подобно платине (особенно ванадаты натрия, калия, бария, серебра, рубидия, цезия, меди и олова), и высокотемпературные катализаторы, подобные пятиокиси ванадия (в особенности окиси вольфрама, титана, железа, олова, хрома и мышьяка). Однако в промышленности широко используются либо только платина и чистая пятиокись ванадия, либо пятиокись ванадия, промотированная сульфатами или пиросульфатами щелочных металлов. Применение платинированного асбеста в качестве катализатора было предложено еще в 1831 г., когда Филлипсу был выдан патент на этот процесс. Этот метод длительное время считался экономически не выгодным, так как ныль — неокислившаяся сера и следы ртути, мышьяка и фосфора (выделявшиеся из пиритов, использовавшихся в качестве серусодержащего сырья) — быстро отравляла платиновый катализатор. Исследования Винклера во Фрейбурге и Кпейтша и других химиков Баденской анилиновой и содовой фабрики показали, что сернистый газ и воздух можно очистить в достаточной степени впрыскиванием водяного пара и тщательной промывкой на фильтрах, пропитанных серной кислотой. [c.325]

    Фиолетовая — калий сине- зеленая — бор желто-зеленая — < )иолетовая — рубидий фиолето- барий, молибден желтая — во-синяя — цезий бледно-синяя — натрий кирпично-красная — каль--свинец, мышьяк, сурьма, селен ций кармйно-красная (малинозеленая или голубая—медь изум- вая) —стронций, литий. -рудно-зеленая — таллий, теллур  [c.75]

    Следует остановиться еще на одном гибридном атомизаторе системе проволочное кольцо — пламя. Кольцо диаметром 4 мм из платиновой проволоки диаметром 0,5 мм установлено в керамическом держателе с электрическими контактами. К кольцу подводят электроэнергию с напряжением до 2,5 В, силой тока до 20 А. На кольцо наносят 1—40 мкл анализируемого раствора и сушат электронагревателем. Для сушки 40 мкл водного раствора требуется 2 мин. При ускорении сушки возможны потери определяемых элементов. После сушки кольцо быстро вводят в пламя и включают электронагрев на полную мощность. За время меньше 1 с температура кольца повышается до 1250°С, и происходит атомизация пробы в пламени. Записывают пик абсорбционного сигнала. Для получения ацетилено-воздушного пламени используют горелку со щелью длиной 8 мм и шириной 0,5 мм. Для введения кольца в пламя сконструировано электромагнитное устройство, которое одновременно включает электропитание кольца для атомизации, С одним платиновым кольцом можно сделать свыше 1000 определений. При испарении 40 мкл раствора достигнуты следующие пределы обнаружения (в мкг/мл) кадмий — 0,25, мышьяк—1,5, свинец — 4, сурьма—10 при испарении 10 мкл цинк—1, висмут — 20, теллур — 30, селен — 60, ртуть — 100. Щелочные и щелочноземельные металлы определяют по эмиссионным спектрам. Предел обнаружения (в нг/мл) при испарении 10 мкл раствора составляет литий — 0,06, натрий и стронций—10, цезий — 80, барий — 90, калий — 1000 [98]. [c.58]

    Левина [314] опубликовала обзор работ по использованию масс-спектрометра для изучения термодинамики испарения и показала, что этот метод может быть применен для изучения состава паров в равновесных условиях и определения парциальных давлений компонентов, а также термодинамических констант. При повышенных температурах изучались галогенные производные цезия [9], были получены теплоты димеризации 5 хлоридов щелочных металлов [355] исследовались системы бор — сера [458], хлор- и фторпроизводных соединений i и z на графите [53], Н2О и НС1 с NazO и LizO [442], UF4 [10], системы селенидов свинца и теллуридов свинца [398], цианистый натрий [399], селенид висмута, теллурид висмута, теллурид сурьмы [400], окиси молибдена, вольфрама и урана [132], сульфид кальция и сера [105], сера [526], двуокись молибдена [76], цинк и кадмий [334], окись никеля [217], окись лития с парами воды [41], моносульфид урана [85, 86], неодим, празеодим, гадолиний, тербий, диспрозий, гольмий, эрбий и лютеций [511], хлорид бериллия [428], фториды щелочных металлов и гидроокиси из индивидуальных и сложных конденсированных фаз [441], борная кислота с парами воды (352), окись алюминия [152], хлорид двувалентного железа, фторид бериллия и эквимолекулярные смеси фторидов лития и бериллия и хлоридов лития и двува лентного железа [40], осмий и кислород 216], соединения индийфосфор, индий — сурьма, галлий — мышьяк, индий — фосфор — мышьяк, цинк — олово — мышьяк [221]. [c.666]

    Парадоксальные относительные атомные массы, не соответствующие массовым числам стабильных изотопов, можно найти и у других элементов в Периодической таблице элементов Д. И. Менделеева-у гелия, фтора, фосфора, скандия, марганца, кобальта, мышьяка, иттрия, ниобия, родия, иода, цезия, празеодама, тербия, гольмия, тулия, лютеция, золота, висмута, урана и тория. При этом только у гелия, лютеция и урана имеются два или три стабильных (или очень долго живущих изотопа) все остальные-это элементы-одиночки, имеющие лишь по одному стабильному изотопу-для них дефект масс выявляется наиболее наглядно. Так, у марганца только один стабильный изотоп-это марганец-55, однако атомная масса марганца меньше 55 и равна 54,9380. [c.49]

    Есть и еще одно очень интересное проявление четно-не-четного эффекта . Оно связано с числом изотопов того или иного элемента. Многие элементы с нечетным порядковым номером, т.е. с нечетным числом протонов в ядре,-это элементы-одиночки они состоят из одного лишь стабильного изотопа. Таких элементов 19 вот эти изотопы фтор-19, нат-рий-23, алюминий-27, фосфор-31, скандий-45, марганец-55, кобальт-59, мышьяк-75, иттербий-89, ниобий-93, родий-103, ИОД-127, цезий-133, празеодим-141, тербий-159, гольмий-165, тулий-169, ЗОЛОТО-197 и висмут-209. В то же время существует всего-навсего один четный элемент-одиночка-это бериллий с единственным стабильным изотопом Ве-9. [c.97]

    В пределах каждой главной подгруппы электроположительный характер возрастает параллельно увеличению порядковых номеров (следовательно, в периодической системе по направлению сверху вниз). В том же направлении убывает электроотркцательный характер. В соответствии с этим наиболее электроположительные элементы (цезий и франций) занимают в периодической таблице место слева внизу, а наиболее электроотрицательный (фтор) находится в ней справа вверху. Этой закономерностью обусловливается то, что все неметаллы группируются в верхнем правом углу таблицы. Металлы же, поскольку они стоят в главных подгруппах, располагаются лучами от нижнего левого угла таблицы вверх и в сторону. Побочные подгруппы содержат исключительно металлы, то же относится к семействам лантанидов и трансуранов. Граница между областью металлов и неметаллов в главных подгруппах обозначена элементами бор — кремний — мышьяк — теллур — астат1ш. [c.33]

    Для металлургии редких металлов чрезвычайно важна комплексная переработка сырья, являющаяся необходимой предпосылкой дальнейшего развития промышленности редких металлов. В Программе Коммунистической партии Советского Союза, принятой ХХИ съездом, говорится Особенно ускорится производство легких, цветных и редких металлов.., . Одной из главных задач в области науки Программа считает совершенствование существующих и изыскание новых, более эффективных методов разведки полезных ископаемых и комплексного использования природных богатств . Это особенно важно для развития промышленности редких металлов, так как полиметаллические руды, главной составной частью которых являются цинк и свинец, часто содержат также (кроме сурьмы и мышьяка) кадмий, таллий, галлий, индий, германий, которые концентрируются в отходах производства свинцовых и цинковых заводов. Эти отходы являются, таким образом, исходным сырьем для получения целого ряда ценных элементов. Пыли и илы сернокислотного прозводства могут содержать селен, теллур, таллий. Шлаки черной металлургии могут служить источником получения ванадия и титана. Золы некоторых углей и сланцев содержат значительные количества германия, ванадия, иногда молибдена, галлия, циркония, редких земель и других элементов. В Калийных солях обнаруживаются рубидий, цезий, в глиноземном сырье — галлий, индий и т. д. [c.20]

    Актиний Серебро Алюминий Америций Аргон. Мышьяк Астатин Золото. Бор. . Барий. Бериллий Висмут Берклий Бром. . Углерод Кальций Кадмий. Церий. Калифорнр Хлор Кюрий. Кобальт Хром, , Цезий. Медь. . Диспрозий Эрбий Эйнштейний Европий Фтор. . Железо. Фермий. Франций Галлий. Гадолиний Германий Водород Гелий Гафний. Ртуть. . Гольмий [c.8]


Смотреть страницы где упоминается термин Цезий с мышьяком: [c.125]    [c.280]    [c.17]    [c.318]    [c.17]    [c.328]    [c.192]    [c.107]    [c.207]    [c.6]   
Химия и технология соединений лития, рубидия и цезия (1970) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Цезий

Цезий цезий



© 2025 chem21.info Реклама на сайте