Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Код генетический митохондриальный

Таблица 9-4. Различия между универсальным генетическим кодом и двумя митохондриальными кодами Таблица 9-4. <a href="/info/502252">Различия между</a> <a href="/info/1911877">универсальным генетическим кодом</a> и двумя митохондриальными кодами

Таблица 7-4. Различия между универсальным кодом и митохондриальными генетическими кодами Таблица 7-4. <a href="/info/502252">Различия между</a> <a href="/info/952126">универсальным кодом</a> и митохондриальными генетическими кодами
    У растений размеры ДНК митохондрий варьируют в широких пределах. Имеются некоторые данные в пользу того, что митохондриальный геном растений представляет собой не одну молекулу ДНК, а, возможно, состоит из нескольких молекул разного размера. Общий размер митохондриального генома у растений примерно сопоставим с размером хлоропластного генома, так что общий объем генетической информации вне ядра, по-ви-димому, достаточно велик. [c.282]

    Методы усиления генетической изменчивости многообразны для этой цели используют культуру тканей, слияние протопластов, перенос одиночных генов, гаплоиды, опыление облученной пыльцой, химический мутагенез, замену митохондриальных и хлоропластных геномов и т. д. Направленный перенос распознаваемых признаков может быть осуществлен методами генетической инженерии. Здесь стоят проблемы выбора вектора, -включение гена в геном и экспрессии нового признака в условиях сложной системы регуляции у растений как на генетическом, так и на метаболическом уровне. [c.50]

    Характер организации генома митохондрий как у простейших эукариот, например грибов, так и у высших животных, включая человека, можно рассматривать как подтверждающий сформулированную выше гипотезу. Считается, что эволюционным предком митохондрий послужили бактерии-предшественники современных прокариот,-вступившие в симбиоз с эволюционным предшественником эукариотических клеток. В самом деле, для митохондриального генома грибов характерно наличие интронов, удаление которых происходит при сплайсинге первичных транскриптов непосредственно в митохондриях. Таким образом, структура митохондриального генома грибов в эволюционном отношении не столь далека от генетической организации, постулируемой для древнейших прокариот. С другой стороны, для митохондрий человека характерна очень компактная организация генома, в нем полностью отсутствуют интроны и удалены любые другие несущественные последовательности. Создается впечатление, что геном митохондрий эукариотических клеток, находящихся на высшей ступени эволюционного развития. [c.60]

    Хотя главная роль и принадлежит ядру, есть данные о том, что взаимодействие генетических систем ядра и митохондрий происходит в обоих направлениях. Например, если в интактной клетке блокировать митохондриальный синтез белка, то будет наблюдаться повышенное образование переносимых в органелл> ферментов, участвующих в синтезе митохондриальных ДНК. РНК и белков, как будто клетка пытается преодолеть эту блокаду. Природу сигнала, посылаемого от митохондрий к ядру, еще предстоит выяснить. [c.497]


    Чтобы иметь возможность провести молекулярно-генетический анализ ДНК, нужно прежде всего получить ее в чистом виде. Типичная диплоидная клетка человека в норме содержит около 6 пг геномной и разное количество митохондриальной ДНК. Тотальная ДНК, экстрагируемая из биологических образцов, представляет собой смесь ядерной и митохондриальной ДНК. Выделение ядерной ДНК возможно только через выделение и очистку клеточных ядер. Однако, как показывает практика, присутствие митохондриальной ДНК не мешает проведению ПЦР с использованием праймеров, специфичных для локусов ядерной ДНК, и наоборот. [c.71]

    До настоящего времени генетическая рекомбинация митохондриальной ДНК человека не обнаружена если она и происходит, то, вероятно, очень редко. Следовательно, рестрикционный полиморфизм митохондриальной ДНК в популяции отражает картину ее мутационной истории. Это означает, что, сравнивая популяции по полиморфизму этого типа, можно определить их [c.147]

    Следует сделать оговорку в отношении митохондриального генетического кода в митохондриях млекопитающих и грибов кодон UGA не терминирующий, а связывает триптофановую тРНК, т. е. кодирует, как и UGG, триптофан с другой стороны, сообщалось, что в митохондриях млекопитающих кодоны AGA и AGG являются терминирующими, а не кодируют аргинин. [c.266]

    Митохондрии располагают своим собственным аппаратом для хранения и экспрессии их генетической информации. Эта информация, содержащаяся в митохондриальной ДНК, включает программы для синтеза специальных митохондриальных транспортных и рибосомных РНК. Кроме того, в митохондриальной ДНК запрограммировано несколько полипептидов, участвующих в выполнении основных функций митохондрий. В их числе некоторые из субъединиц цитохром оксидазы и АТФ-синтазы. Однако ббльшая часть белков программируется в ядре и синтезируется в цитоплазме вне митохондрий. Это же полностью относится к белкам, обслуживающим генетический аппарат митохондрий к митохондриальным ДНК- и РНК-полимеразам, к белкам митохондриальных рибосом, которые резко отличаются от цитоплазматических рибосом и по своим основным характеристикам приближаются к рибосомам прокариот, а также к аминоацил—тРНК-синтетазам, катализирующим аминоацилирование митохондриальных тРНК. Следовательно, митохондрии должны располагать механизмом для транспорта в них широкого спектра белков, синтезируемых в цитоплазме. То же в общих чертах можно отнести и к функционированию генетического аппарата хлоропластов. [c.434]

    Изоферменты митохондрий и цитоплазмы обычно существенно различаются, и фумарат-гидратаза является исключением из общего правила. Довольно типична в этом плане малатдегидрогеназа каждый ее изофермент кодируется отдельным геном, и аминокислотный состав у разных изоферментов неодинаков [4733]. Отношение числа полярных аминокислот к неполярным у двух цитоплазматических форм различается мало, но митохондриальный фермент является более основным белком. Не совсем одинаково и их каталитическое действие, но, хотя митохондриальный изофермент катализирует главным образом прямую реакцию (которая соответствует циклу лимонной кислоты), а цитоплазматический изофермент — обратную (возможно, связанную с липогенезом), оба они присутствуют в относительно больших количествах и вряд ли играют регуляторную роль [4734]. Основная функция этих двух изоферментов, а также двух аспартатаминотрансфераз состоит в переносе по челночному механизму восстановительных эквивалентов между двумя указанными компартментами [3103]. Малатдегидрогеназа растений встречается в виде различных генетически независимых изоформ митохондриальной и цитоплазматической кроме того, в глиоксисомах обнаружена еще и третья форма [5216]. [c.114]

    Вследствие универсальности генетического кода определенная кодирующая последовательность всегда будет содержать одну и ту же информацию. (Единственное исключение-митохондриальные гены, где имеются отличия в генетическом коде, как описано в гл. 4.) Поэтому при встраивании в вектор интактной последовательности, кодирующей эукариотический белок, возможна транскрипция этой последовательности с образованием мРНК, которая может транслироваться в бактерии-хозяине. Единственные отличия состоят в том, что в синтезированном белке могут отсутствовать модификации, имеющиеся в природном клеточном белке, и, конечно, всегда существует риск, что полипептидная цепь в бактериальной клетке окажется нестабильной. Однако при наличии в клетке подходящих условий любая эукариотическая последовательность может быть транслирована с образованием соответствующего белка. [c.244]

    Существование генетической рекомбинации в митохондриях дрожжей (см. ниже) позволило создать генетическую карту генома митохондрий, которая была сопоставлена с физической картой при изучении возникающих естественным путем делеций митохондриального генома (называемых петит-мутациями). Участок, занимаемый каждым геном, определяли по положению на карте соответствующей мРНК. [c.285]

    Весьма значительная часть митохондриального генома дрожжей (около 25%) состоит из коротких (А—Т)-бо-гатых участков ДНК, вероятно не несущих функции кодирования. Однако значительная часть генетического материала все еще не изучена, и будет удивительно, если для оставшихся незаполненными участков карты не будут обнаружены другие гены. Но, даже допуская такую возможность, можно все же считать, что общее число генов в митохондриях дрожжей вряд ли превышает 20. [c.285]


    Предпосылкой для рекомбинации служит одновременное присутствие геномов двух родителей-условие, не выполняющееся при преобладании однородительского наследования генетического материала. Но, поскольку существуют примеры, когда потомству передаются геномы обеих родительских органелл, сразу возникает вопрос как они могут взаимодействовать между собой Возможна ли комплементация различных мутаций может ли происходить рекомбинация между геномами Для комплементации необходимо перемешивание продуктов экспрессии генов для рекомбинации требуется расположение двух геномов физически рядом друг с другом. Оба требования несколько противоречат устоявшемуся взгляду на индивидуальную органеллу, который мог возникнуть на основе представления об эндогенной экспрессии генов органеллы как о процессе, строго ограниченном ее пределами. Однако (по меньшей мере у одного из видов организмов) может происходить рекомбинация хлоропластных ДНК а у другого вида между митохондриальными геномами может происходить и комплементация, и рекомбинация. [c.287]

    Все петит-мутации нарушают функционирование митохондрий. Они не становятся летальными, поскольку дрожжи могут существовать и в аэробных условиях (когда необходимо дыхание) и в анаэробных (когда без него можно обойтись). Следовательно, мутации митохондриального генома являются условно-летальными, вызывающими гибель дрожжей лишь в аэробных условиях в анаэробных же условиях они выживают. Таким образом, нарушение функций митохондрий приводит к переходу на анаэробный способ существования. Несомненно, такой переход невозможен в случае, например, клеток животных, для которых прекращение функционирования митохондрий оказывается летальным. (Аналогичная генетическая ситуация наблюдается в случае хлоропластов С. reinhardii, которые не нуждаются в фотосинтезе в присутствии ацетата.) [c.288]

    Методы клонирования и секвенирования ДНК позволили провести тщательный сравнительный анализ генетической организации митохондриальных геномов у целого ряда организмов, от грибов до человека. Определение полной нуклеотидной последовательности человеческой митохондриальной ДНК, содержащей 16 569 нуклеотидных пар, было завершено в 1981 г. Известны также частичные последовательности митохондриальных геномов быка, дрожжей и Neurospora. Полученные результаты свидетельствуют о том, что митохондриальные геномы высших и низших эукариот, кодирующие примерно один и тот же набор функций, в то же время характеризуются различиями в смысловом значении некоторых кодонов, в правилах антикодон-кодонового узнавания и существенными различиями в общей структурной организации. Можно полагать, что существенным фактором эволюции митохондриальных геномов была селекция на максимальную структурную компактность при максимальной информационной нагруженности (см. Дополнение 12.1). Это, вероятно, достигалось за счет таких изменений генетического кода, которые позволили сократить необходимый для считывания набор тРНК. При этом митохондрии млекопитающих, характеризующиеся наиболее компактной организацией генома, подверглись соответ- [c.95]

    Следовательно, в крови содержится, как минимум, в 850 раз больше молекул мтДНК по сранению с яДНК. Данное обстоятельство следует учитывать при выборе того или иного генетического маркера, т.е. тех или иных полиморфных участков ядерной или митохондриальной ДНК при анализе микроследов крови. [c.89]

    Генетический код, используемый в митохондриях, удалось расшифровать с помощью сопоставления аминокислотных последовательностей митохондриальных белков с соответствующими фрагментами нуклеотидной последовательности митохондриальной ДНК. Так, оказалось, что и у дрожжей, и у млекопитающих триптофан кодируется как триплетом UGG, так и триплетом UGA, который, согласно табл. 12.1, служит терминаторным кодоном. Например, в аминокислотной последовательности субъединищ.1 II митохондриальной щ1тохром-с-оксидазы человека из пяти остатков триптофана три соответствуют кодону UGA, а два других-кодону UGG. Поэтому ясно, что кодон UGA в митохондриях человека не может выступать в роли терминатора трансляции. Расшифрованный таким образом генетический код, используемый в митохондриях человека, представлен в табл. 12.9. Среди других отличий от обычного универсального кода можно отметить то, что кодон AUA вместо изолейцина кодирует метионин, а триплеты AGA и AGG являются не аргининовыми кодонами, а сигналами терминации трансляции. [c.96]

    Аналогичные исследования генетического кода митохондриальных геномов дрожжей и Neurospora выявили определенные отличия как от универсального генетического кода, так и от кода, используемого в митохондриях человека. В митохондриях дрожжей и Neurospora, так же как и в человеческих митохондриях, триплет UGA считывается не как терминаторный, а как триптофановый кодон. В дрожжевом митохондриальном коде в отличие от всех остальных, включая универсальный, семейство триплетов типа UN кодирует не лейцин, а треонин. Трансляция всего этого семейства, так же как и в митохондриях других организмов, осуществляется с помощью одного типа молекул тРНК, несущих антикодон UAG. Как в дрожжевых, так и в человеческих [c.96]

    Митохондриальный генетический код Мутация со сдвигом рамки nonsense-Мутация Перекрывающиеся кодирующие последовательности Правила неоднозначного соответствия Терминаторный кодон [c.101]

    Почти полная идентичность генетического кода у всех организмов служит убедительным доводом в пользу того, что все клетки произошли от общего предшественника. Как же в этом случае объяснить некоторые отличия генетического кода митохондрий Приблизиться к пониманию этого помогли недавно полученные данные о различии генетического кода в митохондриях разных организмов. Папример, триплет UGA, служащий в универсальном коде стоп-кодоном, в митохондриях млекопитающих, грибов и простейших кодирует триптофан, но в митохондриях растений используется как стоп-кодон. Аналогичным образом триплет AGG, обычно кодирующий аргинин, в митохондриях млекопитающих обозначает сигнал "stop", а у дрозофилы кодирует серин (табл. 7-4). Подобные отклонения указывают на то, что в генетическом коде митохондрий могут происходить случайные перемены. Вероятно, возможность появления и закрепления в потомстве случайных изменений в значении кодона связана с необычайно малым числом белков, кодируемых митохондриальным геномом в большом геноме подобные изменения привели бы к нарушению функции многих белков и, как следствие, к гибели клетки. [c.491]

    Но ряду причин большинство экспериментов по изучению механизмов биогенеза митохондрий проводится на культурах Sa haromy es arlshergensis (пивные дрожжи) и S. erevisiae ( пекарские дрожжи). Во-первых, при росте на глюкозе эти дрожжи обнаруживают уникальную способность существовать только за счет гликолиза и поэтому могут обходиться без функционально активных митохондрий, т.е. без окислительного фосфорилирования. Это дает возможность работать с клетками, митохондриальная и ядерная ДНК которых несут мутации, препятствующие нормальному развитию митохондрий. Такие мутации летальны почти у всех организмов. Во-вторых, дрожжи - простые одноклеточные эукариоты - легко выращивать и подвергать биохимическим исследованиям. И наконец, у дрожжей, обычно размножающихся бесполым способом путем почкования (асимметричного митоза), встречается и половой процесс. При половом размножении две гаплоидные клетки сливаются, образуя диплоидную зиготу, которая затем либо делится путем митоза, либо претерпевает мейоз и снова дает гаплоидные клетки. Возможность контролировать в лабораторных условиях чередование бесполого и полового размножения (разд. 13.2) намного облегчает проведение генетического анализа. Такой анализ позволяет выявить гены, ответственные за функцию митохондрий, и установить, которые из них находятся в ядерной ДНК и которые - в митохондриальной, поскольку мутации митохондриальных генов не наследуются по законам Менделя, которым подчиняется наследование ядерных генов [c.493]

    Почему митохондриям и хлоропластам необходима собственная генетическая система, тогда как другие органеллы, например пероксисомы и лизосомы, ее не имеют Этот вопрос совсем не тривиален, так как поддержание отдельной генетической системы дорого обходится клетке специально для этих целей в ядерном геноме должно быть закодировано более 90 белков, в том числе много рибосомных белков, аминоациал-тРПК-синтетазы, ДНК- и РНК-полимеразы, ферменты процессинга и модификации РНК (рис. 7-75). Большинство изученных белков из митохондрий и хлоропластов отличаются по аминокислотной последовательности от своих аналогов из других частей клетки, и есть основание полагать, что в этих органеллах сравнительно мало таких белков, которые могли бы встретиться еще где-нибудь. Это означает, что только для поддержания генетической системы каждого вида энергетических органелл в ядерном геноме должно быть не менее 90 дополнительных генов. Причины такого расточительства неясны, и надежда на то, что разгадка будет найдена в нуклеотидных последовательностях митохондриальной ДНК, не оправдалась. Трудно представить себе, почему образующиеся в митохондриях белки должны непременно синтезироваться там. а не в цитозоле. [c.500]

    Митохондриальная транслирующая система тоже имеет общие черты с бактериальными белоксинтезирующими системами рибосомы митохондрий чувствительны к антибактериальным антибиотикам, синтез белка начинается с N-формилметионина. Однако есть и существенные различия. Самые поразительные из них выявляются при сопоставлении нуклеотидных последовательностей митохондриальных генов с аминокислотной последовательностью кодируемых ими белков. Например, триплет UGA, который служит в универсальном генетическом коде терминирующим кодоном, в митохондриях млекопитающих и дрожжей кодирует триптофан. Кроме того, отличаются значения нескольких других кодонов, причем здесь есть даже различия между кодами, действующими в митохондриях млекопитающих и дрожжей (табл. 9-4). Эти последние различия обусловлены особенностями митохондриальных тРНК, которые кодируются митохондриальным геномом и свойства которых мы подробнее рассмотрим позже. Почему генетический код в митохондриях отличен от кода бактерий и эукариот, пока не ясно. [c.58]

    Возможно, генетические системы этих органелл представляют собой эволюционный тупик. В рамках эндосимбиотической гипотезы это означает, что процесс переноса генов эндосимбионта в ядерный геном хозяина прекратился раньше, чем был завершен может быть, в случае митохондрий эта остановка была результатом сравнительно недавних изменений в генетическом коде митохондрий. Такие изменения, вероятно, сделали бы оставшиеся митохондриальные гены функционально неактивными в случае их переноса в ядро. [c.501]

    Митохондрии обладают собственным унаследованным ими функциональным аппаратом для синтеза белка ДНК, РНК и рибосомами. Поэтому их можно рассматривать как полу-автономные генетические системы [698—700, 742, 927, 1154]. ДНК в митохондриях (и в хлоропластах) является носителем иеменделевской наследственности. Эту наследственность изучали еще задолго до открытия митохондриальной ДНК [1601]. [c.184]

    Некоторые авторы предполагали, что митохондрии могут возникать в цитоплазме de novo. Ссылки на эти работы дают Ленинджер [1116] и Бакстер [176]. Аргументы против возникновения de novo приведены, например, Лаком [1180], который показал, что меченый холин, содержавшийся в уже имевшихся митохондриях, специфично переносится к новым ( молодым ) митохондриям. После открытия митохондриальной ДНК идея синтеза митохондрий de novo была оставлена, по-видимому, всеми [251, 1154, 1317, 1318]. Сейчас генетическая непрерывность митохондрий широко признана. [c.184]

    В митохондриальном геноме дрожжей с помощью генетических методов в сочетании с другими подходами были обнаружены два гена рРНК, примерно 30 генов тРНК и 8 генов, кодирующих белки. Семь из этих восьми белков локализованы во внутренней митохондриальной мембране, а один входит в состав рибосом. Все эти белки являются составными частями больших ферментных комплексов, образованных в основном из субъединиц, импортируемых органеллой из цитоплазмы. [c.61]

    Генетические методы, столь успешно использованные при изучении митохондриального генома дрожжей, неприменимы в случае клеток человека. Однако благодаря своим относительно малым размерам наша митохондриальная ДНК-весьма подходящий объект для определения нуклеотидных последовательностей с помощью современной методики (разд. 4.5.4), и в 1981 г. была опубликована полная первичная структура молекулы этой ДНК, содержащей 16569 нуклеотидов. Сопоставляя эту структуру с уже известными нуклеотидными последовательностями митохондриальных тРНК и аминокислотными последовательностями белков, кодируемых митохондриальной ДНК, удалось определить локализацию многих генов в кольцевой молекуле ДНК из митохондрий человека (рис. 9-67). [c.62]

    Цитоплазматическая наследственность впервые была открыта при изучении сегрегации мутантных признаков хлоропластов у растений. Однако наши знания о генах хлоропластов на молекулярном уровне и сейчас еще недостаточны. Это обусловлено двумя причинами. Во-первых, у растения имеются две отдельные цитоплазматические генетические системы, и часто трудно бывает определить, принадлежит ли данный мутантный ген митохондриям или пластидам. Во-вторых, ДНК хлоропластов больше и намного сложнее митохондриальной ДНК животных и дрожжей (табл. 9-2), что затрудняет анализ находящихся в ней генов. Однако есть и преимущества близкое сходство генетических систем хлоропластов и бактерий позволяет осуществлять точную транскрипцию или трансляцию (или то и другое вместе) ДНК и тРНК хлоропластов с помощью бактериальной системы транскрипции-трансляции. Декодирование ДНК хлоропластов in vitro в экстракте бактериальных клеток можно использовать для идентификации генов, кодирующих определенные белки. [c.63]

    Обычно существование генетической системы в энергетических органеллах объясняют тем, что некоторые из синтезируемых внутри органеллы белков слишком гидрофобны, чтобы пройти сквозь митохондриальную мембрану извне. Однако изучение АТР-синтетазного комплекса (рис. 9-72) показало, что такое объяснение неправдоподобно. Хотя отдельные белковые субъединицы АТР-синтетазы весьма консервативны в ходе эволюции, места их синтеза изменяются. В хлоропластах несколько довольно гидрофильных белков, в том числе четьфе из пяти субъединиц р1-АТРазной части комплекса, образуются на рибосомах внутри органеллы. Напротив, у гриба Меигозрога и в животных клетках весьма гидрофобный компонент (субъединица 9) мембранной части АТРазы синтезируется на рибосомах цитоплазмы и лишь после этого переходит в органеллу. Различную локализацию генов, кодирующих субъединицы функционально эквивалентных белков у разных организмов (рис. 9-72), трудно объяснить с помощью какой бы то ни было гипотезы, постулирующей определенные эволюционные преимущества современных генетических систем митохондрий и хлоропластов. [c.68]


Смотреть страницы где упоминается термин Код генетический митохондриальный: [c.26]    [c.947]    [c.950]    [c.365]    [c.8]    [c.288]    [c.50]    [c.98]    [c.491]    [c.494]    [c.501]    [c.30]    [c.147]    [c.148]    [c.60]   
Молекулярная биология Структура рибосомы и биосинтез белка (1986) -- [ c.16 , c.158 , c.266 ]




ПОИСК







© 2025 chem21.info Реклама на сайте