Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Эмиссионная спектроскопия пламени

    Эмиссионная спектроскопия, нашедшая широкое применение в-атомной спектроскопии, для изучения молекул используется реже. Эмиссионные спектры возникают путем возбуждения электронов в атомах или молекулах при сообщении им избыточной энергии извне и последующего возвращения их в основное состояние с испусканием квантов энергии в виде излучения строго определенных частот. Для перевода вещества в возбужденное состояние нередко применяют пламя горелки, дуговой или искровой разряд. Однако нри этом многие химические связи в молекулах разрываются и наблюдаемый эмиссионный спектр представляет собой спектр продуктов диссоциации — радикалов, атомов и ионов. В то же время именно это делает метод эмиссионной спектроскопии одним из плодотворных экспериментальных приемов для изучения радикалов, играющих решающую роль в протекании многих цепных реакций. Эмиссионные спектры используются также для изучения электронных оболочек атомов, свойств среды, образованной совокупностью атомов, получения некоторых сведений о состоянии ядер атомов, а также для целей качественного и количественного атомного спектрального анализа. [c.157]


    Рнс. 11.16. Распределение температуры по зонам пламени смеси све-Рис. 11.15. Схема пламенного атомизатора тильного газа с воздухом для атомно-эмиссионной спектроскопии — восстановительная зона 2 — 1 — пламя 2 — распыленная проба 3 — внутренний конус 3 — окислитель-проба ная зона 4 — внешний конус [c.228]

    Пробу работавшего дизельного масла разбавляют в соотношении 1 20 смешанным растворителем, состоящим из 85% метилгексилкетона, 13,5% этанола, 1% концентрированной хлороводородной кислоты и 0,5% воды. После тщательного перемешивания пробу выдерживают не менее 3 ч и анализируют. Для приготовления эталонов растворяют хлорид железа (П1) и хлорид меди(II) в смешанном растворителе. В эталоны вводят 5% свежего масла. Использованы воздушно-ацетиленовое пламя и стандартная трехщелевая горелка. Аналитические линии Fe 248,33 нм и Си 324,75 нм. При работе на СФМ Перкин-Элмер , модель 303 чувствительность определения составляет 0,07 мкг/мл для железа и 0,045 мкг/мл для меди, В диапазоне концентраций 1—100 мкг/г коэффициент вариации не превышает 2%. Результаты, полученные описанным методом и методом эмиссионной спектроскопии, полностью совпадают. При применении метилгексилкетона в качестве растворителя получаются заниженные результаты по меди на 8—54%, по железу на 12—62% [203]. [c.204]

    Пламя в атомной абсорбционной спектроскопии является наиболее распространенным способом атомизации вещества. В атомно-абсорбционной спектроскопии пламя выполняет ту же роль, что и в пламенной эмиссионной спектроскопии, с той лишь разницей, что в последнем случае пламя является также и средством для возбуждения атомов. Поэтому естественно, что техника пламенной атомизации проб в атомно-абсорбционном спектральном анализе во многом копирует технику эмиссионной фотометрии пламени. [c.192]

    Фотометрия пламени, пламенная фотометрия, спектрофото-метрия пламени, пламенно-эмиссионная спектроскопия, спектрометрия пламени — вариант спектрального атомно-эмиссионного анализа, основанный на непосредственном измерении интенсивности спектрального излучения жидкого или твердого анализируемого образца, вводимого в распыленном виде в бесцветное газовое пламя как источник возбуждения. Пламя обладает меньшей энергией возбуждения, чем дуга или искра, поэтому оно возбуждает интенсивную эмиссию только у элементов с низким потенциалом возбуждения (щелочные, щелочноземельные элементы, таллий). Если раствор вводят в пламя с постоянной скоростью, то интенсивность излучения зависит от концентрации определяемого элемента (градуировочный график). Фотометр регистрирует излучение только одной длины волны, он применяется для определения одного элемента. Для одновременного определения нескольких элементов служит спектрофотометрия пламени [13, 57]. [c.14]


    Как и любой другой прибор эмиссионной спектроскопии, фотометр для фотометрии пламени имеет источник возбуждения (пламенная горелка), диспергирующий элемент (обычно светофильтр) и приемник света — рецептор (обычно фотоэлемент). В спектрофотометрах для пламени вместо светофильтров применяют призмы и дифракционные решетки. Анализируемый раствор в пламя горелки вводится в виде аэрозоля. При этом растворитель испаряется, а соли металлов диссоциируют на атомы, которые при определенной температуре возбуждаются. Возбужденные атомы, переходя в нормальное состояние, излучают свет характерной частоты, который выделяется с помощью светофильтров, и его интенсивность измеряется фотоэлементом. [c.42]

    В методах атомной эмиссионной спектроскопии для атомизации и возбуждения используются различные источники, которые подразделяются на две основные категории - пламенные и непламенные. К категории пламен относятся химические пламена, непламенные источники обычно представляют электрические разряды разных типов, таких как дуга, искра, высокочастотная плазма. [c.297]

    В атомно-абсорбционном анализе по ряду причин турбулентные пламена почти не применяются, однако в пламенной эмиссионной спектроскопии, как это было показано автором в ряде работ, цитируемых в монографии [32], использование турбулентного водородно-кислородного пламени в некоторых случаях, [c.52]

    Эмиссионная спектроскопия основана на регистрации и анализе спектра, излучаемого пробой вещества, нагретого до высокой температуры (пламя дуги, искра). Метод применяется для обнаружения и определения металлов, многие из которых обнаруживаются при содержании их в пробе 10 —10 %. Поэтому метод эффективен для определения примесей и следовых количеств. [c.343]

    Фотометрию пламени в узком смысле можно рассматривать как метод эмиссионной спектроскопии. Окрашивание пламени, возникающее, например, при внесении летучих солей щелочных и щелочноземельных металлов в пламя, издавна используют для целей качественного анализа. Но визуальным методом можно определить окрашивание пламени только в видимой части сп( ктра и невозможно разложить смешанную окраску на составные цвета, а интенсивность окраски можно оценить лишь очень приешизительно. В фотометрии пламени измеряют интенсивность излучения и при определенных условиях используют зависимость ее от концентрации веществ, вызывающих окрашивание пламени. [c.373]

    Атомно-абсорбциониая спектроскопия. В основе метода лежит измерение резонансного поглощения энергии атомами определяемого элемента. Для< испарения и термического разложения пробы (атоми-зации) используют в основном газовое пламя. Чувствительность метода обычно выше, чем при эмиссионной спектроскопий. Этим методом можно определять все элементы, способные испаряться в пламени. Метод особенно эффективен для определения следовых, количеств элементов (до 1 млн. с относительной средней квадратичной ошибкой 2—4%). [c.344]

    Для измерения pH, рСОг и рОг при помощи электродов различных типов [16, 17] разработан ряд методик [18, 19, 20, 121]. Особенно большое значение в этом случае имеет метод отбора и хранения проб, поскольку парциальное давление кислорода и диоксида углерода в пробах цельной крови и плазмы, если не принять специальных мер предосторожности, сравняется с их парциальным давлением в воздухе. Кроме того, так как показания электродов зависят от правильности их градуировки и эксплуатации, их следует периодически (через каждые несколько часов) проверять, используя градуировочную смесь газов соответствующей концентрации. При помощи специальной компьютерной системы операцию градуировки можно автоматизировать. Физиологические жидкости удобно анализировать методом атомно-абсорбционной [22] и эмиссионной спектроскопии [23]. После соответствующей предварительной обработки исследуемый образец вводят в виде раствора в пламя, где происходит его атомизация. В эмиссионном спектральном анализе энергия пламени используется для возбуждения атомов. В результате перехода из возбужденного состояния в основное они испускают излучение с характеристическими длинами волн, интенсивность которого пропорциональна концентрации определяемых атомов в пламени. В атомно-абсорбционном анализе через атомный пар пробы пропускают излучение и регистрируют его. При этом интенсивность излучения снижается в соответствии с I) показателем поглощения элемента при той длине волны, при которой проводятся измерения, 2) длиной пути, пройденного излучением в образце, и 3) концентрацией определяемого элемента. Если первые две величины поддерживаются постоянными, то, измерив поглощение, можно установить концентрацию элемента. Эти два метода дополняют друг друга, и в каждом конкретном случае аналитик выбирает тот из них, который в данной ситуации более чувствителен и более точен. Эмиссионный спектральный анализ может быть менее селективен, чем атомно-абсорбцион-ный, и более подвержен спектральным помехам. Одни элементы можно определять и тем и другим методом (А1, Ва, Са), другие лучше анализировать методом атомно-абсорбционной спектроскопии (например, Ве, В1, Ли, 2п), третьи же целесообразнее определять атомно-эмиссионным методом (и, Ки, N. ТЬ и т. д.). [c.29]


    Для повышения чувствительности пламенного атомно-абсорбционного или плазменного эмиссионного анализа определяемые элементы вводят в пламя (плазму) после предварительного перевода в хлориды. Растворы проб и эталонов (2—3 мл) вводят в кварцевую пробирку с внутренним диаметром 7 мм и длиной 50 мм и выпаривают при 110°С под ИК-лампой. Затем пробирку присоединяют к распылительной камере атомно-абсорб-ционного СФМ Вариан Тектрон , модель АА-5, помещают в электрическую трубчатую печь и через 30 с после нагрева до 850 °С в пробирку направляют смесь воздуха с парами хлороводородной кислоты (получают путем барботирования воздуха со скоростью 600 мл/мин через кислоту при комнатной температуре). В результате взаимодействия кислоты с сухим остатком пробы при высокой температуре образуются хлориды, которые струей воздуха направляются в распылительную камеру СФМ, далее в ацетиленовоздушное пламя. При этом наблюдается кратковременный пик абсорбционного сигнала, который регистрируют на ленте самописца. Метод позволяет определять нанограммовые количества висмута, кадмия, германия, молибдена, свинца, олова, таллия и цинка. При испарении 2 мл раствора достигнуты следующие пределы обнаружения в нг/мл молибдена — 3 свинца—1 кадмия — 0,5. При использовании плазменной эмиссионной спектроскопии в пробирку направляют смесь аргона с парами хлороводородной кислоты (200 мл/мин) со скоростью 200 мл/мин. При испарении 2 мл раствора до- [c.145]

    На практике в эмиссионной спектроскопии существует несколько способов возбуждения, из которых наибольшее значе- ние имеют электрические дуга и искра, пламя и электрогенери-рованная плазма в газе-носителе. Мы разберем каждый из этих способов и одновременно дадим описание соответствующих приборов. [c.190]

    В прошлом газовое пламя как источник возбуждения атомов широко использовалось в методе, н азь1ваемом фотометрией пламени. Сейчас оно в основном применяется для определения щелочноземельных металлов. Испускание можно измерять на многих атомно-абсорбционных спектрофотометрах, используя то же самое пламя и распылительную систему. В этом случае пламя должно иметь более высокую температуру, чем в ААС, где атомы поглощают, резонансное издунение следовательно, долж йБпгажщиГься в основном состоянии, тогда как в эмиссионной спектроскопии их нужно перевести в возбужденное состояние. [c.200]

    Спектральный анализ (эмиссионный) — физический метод качественного и количественного анализа состава вещества на основе изучения спектров. Оптический С. а. характеризуется относительной простотой выполнения, экспрессностью, отсутствием сложной подготовки проб к анализу, незначительным количеством вещества (10—30 мг), необходимого для анализа на большое число элементов. Спектры эмиссии получают переведением вещества в парообразное состояние и возбуждением атомов элементов нагреванием вещества до 1000—10 000°С. В качестве источников возбуждения спектров прп анализе материалов, проводящих ток, применяют искру, дугу переменного тока. Пробу помещают в кратер одного из угольных электродов. Для анализа растворов широко используют пламя различных газов. Качественный н полуколичественныйС. а. сводятся к установлению наличия или отсутствия в спектре характерных линий и оценки по их интенсивностям содержания искомых элементов. Количественное определение содержания элемента основано на Эмпирической зависимости (при малых содержаниях) интенсивности спектральных линий от концентрации элемента в пробе. С. а.— чувствительный метод и широко применяется в химии, астрофизике, металлургии, машиностроении, геологической разведке и др- МетодС. а. был предложен в 1859 г. Г. Кирхгофом и Р. Бунзеном. С его помощью гелий был открыт на Солнце ранее, чем на Земле. Спектроскопия инфракрасная — см. Ифракрасная спектроскопия. Спектрофотометрия (абсорбционная)—физико-химический метод исследования растворов и твердых веществ, основанный на изучении спектров поглощения в ультрафиолетовой (200—iOO нм), видимой (400—760 нм) и инфракрасной (>760 нм) областях спектра. Основная зависимость, изучаемая в С.,— зависимость интенсивности поглощения падающего света от длины волны. С. широко применяется при изучении строения и состава различных соединений (комплексов, красителей, аналитических реагентов и др.), для качественного и количественного определения веществ (определения следов элементов в металлах, сплавах, технических объектах). Приборы С.—спектрофотометры. [c.125]

    Во второй половине XIX века работы Грукса, Райха и Рихтера, Янсена, Чемпиона, Пелле и Гренье подтвердили растущий интерес к спектроскопии пламени. В 1877 г. Ги сконструировал пневматический распылитель для контроля за количеством пробы, вводимой в пламя, и показал, что интенсивность излучения пропорциональна количеству пробы. Началом спектроскопии в ее современном виде можно считать работу Ландергарда 1928 г. Он использовал пламя ацетилен-воздух и пневматический распылитель и смог построить градуировочные графики для количественного анализа. Первый коммерчески доступный пламенный эмиссионный спектрометр был выпущен Сименсом и Цейсом в середине 1930-х. В 1955 г. вышла в свет первая монография на эту тему — Фотометрия пламени , написанная Рамиресом Муньосом. Пламенная фотометрия все еще изменяется, хотя с начала 1960-х широко используют новые источники излучения, такие, как плазма. [c.10]

    Работы, посвященные химическим помехам в эмиссионной пламенной спектроскопии, занимают сейчас огромное число журнальных страниц. К сожалению, атомная абсорбция сможет скоро конкурировать с ней в этом вопросе. При рассмотрении действия химических помех в пламенной спектроскопии полезно напомнить все этапы процесса превращения раствора образца в атомный пар. Когда для этой цели используется горелка с предварительным смешением, распылитель сначала превращает раствор в аэрозоль (туман). Этот аэрозоль поступает в горелку и затем в пламя. В пламени капельки высыхают, остаток плавится и испаряется, причем любые соединения должны диссоциировать на свободные атомы, чтобы можно было наблюдать абсорбцию. Если же высушенная соль является соединением, которое плохо разлагается при температуре пламени, количество элемента, определяемое по абсорбции, окажется меньшим, чем при использовании раствора с легко диссоциирующими солями. Так, например, присутствие фосфата в растворе стронция приводит к образованию термостойкой соли стронция. Известно, что добавление в растворы, содержащие мешающие анионы, некоторых катионов может устранить помеху. [c.62]

    Как известно, при введении в пламена солей скандия, иттрия, лантана и лантаноидов (кроме церия) в спектрах пламен возбуждаются яркие молекулярные полосы монооксидов (которые ранее в ряде случаев использовали для определения этих элементов методами эмиссионной пламенной спектроскопии), что подтверждает описанный выше ход процессов в пламенах. Энергии диссоциации большинства монооксидов этих элементов, как это указано, например, в [80, 81], достигают значений порядка 550—750 кДж/моль, и поэтому степень их диссоциации даже в пламени динитроксид — ацетилен невелика. По-видимому, именно это обстоятельство и служит основной причиной ограниченности возможностей применения метода ААА в рассматриваемом случае. Так как в основном приходится определять относительно низкие концентрации лантаноидов, то на рекомендациях по определению элементов, пределы обнаружения которых превышают 1,0 мкг/мл, мы останавливаться не будем. Рекомендации по определению остальных элементов подгруппы скандия представлены в сводной таблице (разд. 4.5.7). [c.187]


Смотреть страницы где упоминается термин Эмиссионная спектроскопия пламени: [c.693]    [c.8]    [c.11]   
Смотреть главы в:

Основы аналитической химии Часть 2 -> Эмиссионная спектроскопия пламени




ПОИСК





Смотрите так же термины и статьи:

Спектроскопия эмиссионная

гом эмиссионный



© 2025 chem21.info Реклама на сайте