Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Очистка меди (рафинирование)

    Электрохимическое выделение металлов из водных растворов их соединений лежит в основе гидроэлектрометаллургических процессов, т. е. процессов извлечения металлов из руд (электроэкстракция) и их очистки (рафинирование) при помощи электролиза. Гидроэлектрометаллургическим путем получают и очищают такие металлы, как медь, никель, цинк, кадмий, олово, свинец, серебро, золото, марганец и др. Гидроэлектрометаллургия позволяет получать [c.452]


    Серебро получают также в качестве побочного продукта при рафинировании меди и свинца. При электролитической очистке меди серебро и золото скапливаются на дне ванны извлечь эти металлы можно простыми химическими методами. Небольшое количество серебра, содержащееся в сыром свинце, извлекают остроумным способом, так называемым методом Паркса. При этом в расплавленный свинец добавляют небольшое количество (около 1%) цинка. Жидкий цинк нерастворим в жидком свинце, а растворимость серебра в жидком цинке приблизительно в 3000 раз превышает растворимость в жидком свинце. Следовательно, константа распределения между двумя жидкостями (гл. XVI) составляет 3000, т. е. большая часть серебра растворится в цинке. Цинко-серебряная фаза после перемешивания всплывает, ей дают затвердеть, а затем отделяют цинк можно отогнать, а серебро останется в перегонном аппарате. Содержащееся в свинце золото также извлекают этим методом. [c.407]

    Электролиз водных растворов — важная отрасль металлургии тяжелых цветных металлов меди,висмута, сурьмы,олова, свинца, никеля, кобальта, кадмия, цинка. Он применяется также для получения благородных и рассеянных металлов, марганца и хрома. Электролиз используют непосредственно для катодного выделения металла после того, как он был переведен из руды в раствор, а раствор подвергнут очистке. Такой процесс называют электроэкстракцией. Электролиз применяется также для очистки металла — электролитического рафинирования. Этот процесс состоит в анодном растворении загрязненного металла и в последующем его катодном осаждении. Рафинирование и электроэкстракцию проводят с жидкими электродами из ртути и амальгам (амальгамная металлургия) и с электродами из твердых металлов. К электролитическим способам получения металлов относят также цементацию — восстановление ионов металла другим более электроотрицательным металлом. Цементация основана на тех же принципах, что и электрохимическая коррозия при наличии локальных элементов. Выделение металлов осуществляют иногда восстановлением их водородом, которое также может включать электрохимические стадии ионизации водорода и осаждение ионов металла за счет освобождающихся при этом электронов. [c.227]

    Теория процесса очистки и гранулирования Очистка меди (рафинирование) [c.135]

    Электролизом растворов солей получают медь, цинк, кадмий, никель, кобальт, марганец и другие металлы. В этих процессах используют нерастворимые аноды. На катоде происходит разряд ионов металла из растворов, которые получают при физической и химической обработке руд. Метод электролиза используют для рафинирования (очистки) металлов меди, золота, серебра, свинца, олова и др. При рафинировании анодом служит очищаемый металл. На аноде растворяются основной металл и примеси, потенциал которых отрицательнее потенциала основного металла. Примеси, имеющие более положительный потенциал, выпадают из анода в виде шлама. [c.212]


    Электролиз используется для очистки металлов от примесей. Так, например, большие количества меди необходимы для производства проводов. Для этой цели пригодна только чистая электролитическая медь. При выплавке же из руд получается так называемая черновая медь с содержанием меди от 96 до 98%. Остальное — нежелательные примеси, которые снижают ее электропроводность. Рафинирование (очистка) меди основано на анодном растворении ее. В больших ваннах подвешивают ряд пластин из черновой меди, а между ними — тонкие пластинки чистой меди, заливают электролит и пропускают ток. Анод — черновая медь — растворяется, на пластинках из чистой меди, которые служат катодом, нарастает слой очищенной меди. Электролитическая медь содержит 99,97% чистой меди. [c.223]

    Получение особо чистых металлов чаще всего основано на принципе ступенчатого электролитического рафинирования (рис. 265). Схема используется для получения особо чистых электроположительных металлов — золота, серебра, меди, а также свинца, олова и др. В этом случае иногда применяют только отстаивание раствора, его периодическую очистку активированным углем или ионообменными смолами и тщательное фильтрование. Иногда применяют периодический отбор порций загрязненного раствора. [c.571]

    Основные стадии башенного способа следующие 1) очистка меди (рафинирование), 2) гранулирование, 3) растворение меди в серной кислоте (натравка) и 4) кристаллизация медного купороса. [c.134]

    В области цветной металлургии электролиз используется как для извлечения ряда металлов из руд (меди, цинка, кадмия и др.), так и для рафинирования цветных металлов, выплавленных в печах. Почти всю добываемую медь, значительную часть никеля, свинца, серебра и золота подвергают электролитической очистке. [c.4]

    В тех случаях, когда в процессе электролиза используется активный (расходуемый) анод, то последний будет окисляться в ходе электролиза и переходить в раствор в виде катионов. Энергия электрического тока при этом расходуется на перенос металла с анода на катод. Данный процесс широко используется при рафинировании (очистке) металлов. Так, на этом принципе основано, в частности, получение чистой меди из загрязненной. В раствор медного купороса погружают пластины из очищенной и неочищенной меди. Пластины соединяют с источником постоянного тока таким образом, чтобы первая из них (очищенная медь) была отрицательным электродом (катод), а вторая — положительным (анод). В результате пластина из неочищенной меди растворяется и ионы меди из раствора осаждаются на катоде. При этом примесь остается в растворе или оседает на дно ванны. Этот же принцип используется для защиты металлов от коррозии путем нанесения на защищаемое изделие тонких слоев хрома или никеля. [c.85]

    ТАБЛИЦА 40. ЭФФЕКТИВНОСТЬ очистки МЕДИ от ПРИМЕСЕЙ ПРИ ЭЛЕКТРОЛИТИЧЕСКОМ РАФИНИРОВАНИИ [c.162]

    Древесный уголь получают нагреванием древесины без доступа воздуха. Образующийся при этом рыхлый черный продукт сохраняет первоначальную структуру древесины. В металлургии им пользуются тогда, когда требуется особая чистота угля, например при рафинировании (очистке) меди. Ввиду большой адсорбционной способности древесного угля он применяется для очистки различных веществ от примесей и в противогазовом деле. Кроме того, древесный уголь потребляется при изготовлении черного пороха, а также в домашнем хозяйстве. [c.506]

    В электротермических и электросварочных процессах изменения свойств и формы обрабатываемого материала достигаются за счет электронагрева. В промышленности широко применяют также технологические процессы, в которых для формообразования и изменения свойств материалов используются, помимо электронагрева, электрохимические и механические воздействия. Значения каждого из этих воздействий различны для разных технологических процессов. Из них рассмотрим в первую очередь электролиз, который получил широкое распространение в металлургии цветных металлов и в ряде химических производств. Такие металлы, как алюминий, цинк, магний, получают главным образом путем электролиза. Кроме того, электролиз используется для рафинирования (очистки) меди, никеля, свинца, а также для получения водорода, кислорода, хлора и ряда других химических веществ. [c.325]

    Электролиз используют для очистки металлов от примесей. Рафинирование (очистка) меди основано на анодном растворении металла. В больших ваннах подвешивают ряд пластин из черновой меди, а между ними — тонкие пластинки чистой меди, заливают электролит и пропускают ток. Анод — черновая медь — растворяется, а на пластинках из чистой меди, которые служат катодом, нарастает слой очищенной меди. Электролитическая медь содержит 99,97 % чистой меди. [c.191]


    Коррозия металлов определяется как процесс (и как результат) самопроизвольного разрушения металлов при их химическом, электрохимическом или биохимическом взаимодействии с окружающей средой. Коррозия представляет собой нежелательный и непреднамеренный процесс. Электрохимическое растворение анодов из черновой меди в ванне по ее рафинированию нельзя считать коррозионным процессом, так как оно является необходимым и желательным звеном в очистке меди от примесей. В то же время электрохимическое растворение железного анода в ванне по электролизу воды следует отнести к категории коррозионных процессов, поскольку оно здесь нежелательно. Разъедание стенок железной цистерны при перевозке в ней серной кислоты считается коррозионным разрушением, а растворение железа в серной кислоте с целью получения чистого реактивного сульфата железа не принято рассматривать как его коррозию, хотя в основе обоих процессов лежат одни и те же явления. [c.457]

    Древесный уголь получают сухой перегонкой дерева (нагревание дерева без доступа воздуха). Он употребляется в металлургии для выплавки высокосортного чугуна и рафинирования меди, для очистки спирта от посторонних примесей, для изготовления активированного угля, применяемого в противогазах, для производства черного пороха, в медицине, в быту и т. д. [c.464]

    Для этого загрязненную медь расплавляют в пламенных печах и окисляют кислородом воздуха, содержащимся в печных газах. Большая часть примесей при этом окисляется и удаляется в виде шлака с поверхности расплавленной меди, а медь получается более чистой. Процесс очистки металла окислением входящих в него примесей кислородом воздуха при высокой температуре называется окислительной очисткой, или рафинированием. [c.135]

    Сколько электричества (в а-ч) теоретически необходимо для электрохимической очистки (рафинирования) 1 т черновой меди, содержащей 4% посторонних примесей  [c.166]

    Электролитическое рафинирование в хлористых растворах может быть применено в специальных случаях, для очистки вторичной меди (латунных ломов), не содержащей As, Sb, Ag, от примесей Zn, Fe, Ni, o. [c.216]

    Ю. В. Баймаков с сотрудниками изучали процесс поведения иридия при электролитическом рафинировании меди и никеля, используя для этого радиоактивный изотоп 1г 2. Было установлено, что иридий обнаруживается в растворе как в форме ионов, так и в форме высоко диспергированных частиц. В катодном никеле иридия оказывалось значительно меньше, если анод заключали в полупроницаемые пленки, пропускавшие ионы, но препятствовавшие проникновению сквозь них коллоидных частиц (коллодиевые пленки). При очистке никелевых растворов от примесей было обнаружено, что цементная медь содержит небольшие количества платины и палладия и практически в ней [c.306]

    До сих пор рассматривались Процессы электролиза с применением инертных электродов. Примером электролиза с активным анодом может служить электрохимическое рафинирование меди. При этом анод представляет собой пластину черновой меди, подлежащую очистке, а катод — пластину из химически чистой меди. Электролитом служит водный раствор сульфата меди. При рафинировании медь окисляется на аноде с переходом ионов Си + в раствор  [c.300]

    Вещества особой чистоты получают или глубокой очисткой образцов, полученных обычными методами, или выделением особо чистого вещества из другого, более сложного, особой чистоты, или, наконец, путем синтеза сложного особо чистого вещества из простых особо чистых веществ. Во всех случаях необходима глубокая очистка веществ. Для этого используются химические и особенно физико-химические методы дистилляция и ректификация экстракция различными растворителями сорбционные методы (хроматография, ионный обмен на колонках и пр.) кристаллизационные методы (направленная кристаллизация, зонная плавка и др.) электролиз (см., например, рафинирование меди в гл. УИ1, 7) вакуумная дуговая и электронно-лучевая плавка, широко используемая в промышленности для получения чистых циркония, тантала, ниобия, вольфрама и других металлов другие методы. [c.258]

    Современная техника предъявляет большие требования к чистоте материалов, в частности металлов. В цветной металлургии для очистки металлов от примесей широко применяют электролиз с растворимым анодом. Электролитическому рафинированию подвергают железо, медь, серебро, золото, свинец, олово, никель и другие металлы. Например, медь рафинируют следующим образом. В электролизер, заполненный раствором сернокислой меди, подкисленной серной кислотой, помещаются аноды из черновой меди (предварительно подвергнутой горячему рафинированию, при котором окисляется большая часть примесей). Между ними подвешивают катоды из тонких листов тщательно очищенной меди. Напряжение на ванне поддерживают в пределах 0,20—0,40 в, так чтобы при прохождении тока медь, а также примеси с более низким потенциалом, чем у меди (N1, Ре, 2п и др.), окислялись на аноде и переходили в раствор. Остальные примеси с более высокими потенциалами по сравнению с потенциалом меди не окисляются и ыпадают в виде осадка на дно ванны. Это анодный шлам. Он идет на переработку для извлечения золота, серебра, селена, теллура, что в значительной степени оправдывает большие затраты электроэнергии на рафинирование меди. На катоде восстанавливаются только ионы Сц2. Содержание Си в катодной меди достигает 99,98%, а в особых условиях—99,995%. [c.214]

    Электрохимический способ применяют и для очистки (рафинирования) металлов, полученных другими методами. Так, из меди, загрязненной примесями никеля и железа, отливают аноды. Их помещают в ванну с электролитом, содержащим серную кислоту и сульфат меди (II). При прохождении через ванну постоянного электрического тока на катоде (медной пластине) осаждается чистая медь. [c.169]

    По окончании обжига шлак сливают, а штейн переливают в конвертер, в который добавляют флюс и вдувают воздух. В конвертере железо окисляется и переходит в шлак, сульфид меди окисляется до металла с выделением сернистого газа. Полученную черновую медь подвергают огневому рафинированию в присутствии флюсов. В результате третьего обжига содержание примесей снижается до 0,4—0,7%. Последняя очистка меди проводится электролитически. Очищаемая медь в виде пластин помещается в раствор Си304 с добавкой Н2304 и анодно растворяется в этом растворе, а чистая медь (99,95-99,99%) осаждается на медных листах, служащих катодом. Примеси Ле, Ли, платиновых металлов, Зе, Те, Аз и т. д. попадают в шлам (осадок) и обычно извлекаются из него гидрометаллургическими методами. Подробнее металлургия меди описана в разделе 2.3. [c.175]

    Опыт 3. Для того чтобы учаш,иеся познакомились с принципами промышленной очистки меди, проделывают опыт по электролитическому рафинированию меди. Для этого берут один из сплавов меди, имеющихся в распоряжении учителя латунь (Си-1-2п), кон-стантан ( u+Ni -Mп), манганин ( u -Mп+Ni), мельхиор (Си- -N0 и др. [c.289]

    Окислительная очистка меди состоит из двух основных операций а) окисления примесей и б) отделения окислившихся примесей от чистого металла в виде шлака или в виде пароз. Процесс рафинирования меди весьма сложен. Он состоит из нескольких стадий нагрева, плавления, окисления и кипения меди. [c.136]

    Дальнейшая очистка меди связана с электролитическим рафинированием, при котором листы черновой меди (анод) помещают в раствор электролита ( uS04 + H2SO4), в котором анодная медь окисляется до ионов [Си(Н20)4] и осаждается затем в чистом виде на катоде из предварительно очищенной меди (рис. 87). Содержащиеся в черновой меди примеси более активных металлов при рафинировании остаются в растворе, а менее активные металлы — серебро, золото, платина — в раствор не переходят и остаются в виде анодного шлама на дне электролизера. Этот шлам является важным источником получения металлического серебра, извлекаемого обработкой шлама ртутью или цианидным выщелачиванием (см. ниже). [c.397]

    Из кислородных руд медь получают восстановлением углем. Сернистые руды нредварительпо обжигают, а затем подвергают восстановлению. В результате получают так называемую сырую или черновую медь, которая содержит 2—3% примесей различных металлов. Сырую медь подвергают дальнейшей очистке, или рафинированию. Очистку меди производят главным образом путем электролиза. В ванну, содержащую раствор медного купороса, подвешиваются толст]>1е пластины сырой меди, которые служат анодом, а катодом являются топкие пластинки чистой меди. Нри пропускании электрического тока низкого панряжения пластины сырой меди медленно растворяются, а на катоде откладывается чистая медь. [c.248]

    Получение гранулированной меди. Медный лом и отходы ме-таллообрабаты вающей промышленности содержат, кроме меди, примеси цинка, железа, свинца, висмута, никеля, кобальта и дру гих металлов. В ряде случаев присутствуют соединения серы с металлами и окислы металлов. Для очистки меди от этих примесей сырье расплавляют в пламенных печах и окисляют кислородом шсздуха. Большая часть примесей окисляется при высокой температуре и удаляется в виде шлака, накапливающегося на поверхности расплавленной меди. Этот процесс называют рафинированием меди. [c.226]

    В то же время на катоде эквивалентное количество меди будет осаждаться из раствора. Другими словами, будет присходить как бы перенос меди с анода на катод. Этот процесс используют для очистки (рафинирования) меди, а также в гальванопластике. [c.424]

    Шлак сливают, потом выливают медь. Ее подвергают огневому рафинированию — окислительной плавке в присутствии флюсов. При этом содержащиеся в меди примеси частично переходят в шлак. В результате получают медь, содержащую 99,3—99,6% Си. Ее очии ают электролизом (аноды — пластины из меди, подвергаемой очистке, катоды — тонкие листы чистой меди электролит — раствор USO4 с добавкой кислоты H2SO4, предотвращающей образование у катода основных солей). [c.582]

    Выше были приведены данные о поведении примесей при электролитическом рафинировании меди. Высоких показателей очистки можно достигнуть при тщательном соблюдении технологического режима. Как уже упоминалось, при рафинировании применяется раствор, состоящий из 30—45 г/л Си + и 150— 200 г/л Н2504. Чем больше в аноде содержится примесей (особенно никеля) и чем выше применяемая плотность тока, тем более высоким должно быть содержание меди в растворе. Повышенная кислотность несколько благоприятствует переходу драгоценных металлов в катод, зато влияет на снижение содержания в нем вредных примесей Аз, ЗЬ, В1. [c.159]

    Трудность получения чистого свинца электролизом заключается в том, что мышьяк, сурьма и висмут, попадающие в раствор,, эле1Ктроположительнее свинца и переходят в катод, кроме того, близость потенциалов свинца и олова делает последнее одной из наиболее трудноотделимых примесей. При высоком содержании меди затруднен процесс анодного растворения свинца. В связи с этим, при электролитическом рафинирований чернового свинца его предварительно подвергают обезмежива-нию и частичной очистке от мышьяка и олова огневыми методами. [c.261]

    К одному ИЗ многих интересных применений таких электролизных процессов относится рафинирование, или очистка, металлической меди. В промышленности соединения меди восстанавливают с помощью химических восстановителей. Например, для восстановления сульфида меди СнзВ через расплавленную руду продувают воздух  [c.226]

    Для закрепления знаний учапдихся целесообразно показать диафильм Применение серной кислоты и производство ее контактным способом , который содержит кадры для контроля и проверки знаний учащихся. Содержание кадров состоит из отдельных вопросов и ответов на них. Например, в кадре 7 Какие свойства серной кислоты обусловливают ее применение показано применение серной кислоты в качестве электролита, гигроскопического вещества, в очистке нефтепродуктов, в металлургии (для рафинирования меди), в гальванотехнике, в производстве минеральных удобрений. В кадре 10 От чего зависит выбор сырья Что вы понимаете под комплексной переработкой сырья показана диаграмма производства серной кислоты из серы, из попутных газов, из серного колчедана. Обсуждаются доступность сырья, его распространенность, способы очистки. В кадре 16 Обжиг колчедана показан пример гетерогенной, экзотермической, необратимой реакции. Требуется ответить, при каких условиях наиболее целесообразно ее вести, обсуждается возможность обеспечения наибольшей поверхности соприкосновения реагирующих веществ и т. д. Таким образом, сочетание демонстрации кадров образует систему контрольных заданий, на основе которых может быть проведена основная работа при закреплении и углублении знаний учащихся. [c.59]

    Распространен электролиз с применением растворимых (а к т и в н ы х) а н о д о в, подвергающихся окислению. Во внешнюю цепь посылает электроны сам анод, при этом смещается равновесие между электродом и раствором. Применение активных анодов позволяет провод[1ть электролитическую очистку (рафинирование) металлов. Подлежащий рафинированию исходный (черновой) металл используется в качестве анода, а на катоде (материал катода служит подложкой ) осаждается чистый (рафинированный) металл. Так, при рафинировании меди в качестве анода берут исходную (черновую) медь, проводят электролиз нейтрального водного раствора СнЗОа. На катоде разряжаются ионы и выделяется медь, так как стандартный потенциал меди си/сиг+=+0,34 В значительно превышает потенциал процесса восстановления молекул Н О ( °—0,83 В)  [c.165]


Смотреть страницы где упоминается термин Очистка меди (рафинирование): [c.516]    [c.380]    [c.276]    [c.552]    [c.206]    [c.417]   
Смотреть главы в:

Производство минеральных солей Издание 2 -> Очистка меди (рафинирование)




ПОИСК





Смотрите так же термины и статьи:

Рафинирование

Рафинирование меди



© 2025 chem21.info Реклама на сайте