Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хромиты кальция и магния

    Действие окислителей и восстановителей. Катионы бария, стронция, кальция, магния, алюминия устойчивы по отношению к окислителям и восстановителям. Ионы марганца, хрома (III), железа (И) и (III) и висмута (III) вступают в реакции окисления и восстановления как в кислой, так и щелочной средах. В щелочной среде хлор, бром, перекись водорода, гипохлорит, двуокись свинца, перманганат окисляют ионы хрома (III) в хромат, а в кислой среде — в бихромат. [c.39]


    Химический состав титаномагнетитовых руд разнообразен кроме основных компонентов—железа и титана — они содержат кремний, алюминий, ванадий, хром, кальций, магний, натрий, калий, марганец, никель, кобальт, фосфор, серу, мышьяк, а также иногда ниобий, тантал, редкие земли и платину. [c.235]

    Определению молибдена роданидным методом не мешают ионы алюминия, кобальта, урана, тантала, натрия, калия, кремния, кальция, магния, титана, ванадия, хрома, марганца, никеля, цинка, мышьяка, серебра, олова, сурьмы и ртути. Соединения железа (III) и меди усиливают интенсивность окраски, вероятно, вследствие образования много-ядерных комплексов, содержащих молибден, железо (или медь) и роданид. Мешающее влияние вольфрама устраняют введением винной кислоты, препятствующей образованию роданидных комплексов вольфрама. [c.379]

    Отложения с наружной стороны низкотемпературных поверхностей нагрева мазутных парогенераторов, например с пластин регенеративных воздухоподогревателей, с трубок водяных экономайзеров, содержат сернокислые соли железа, никеля, ванадия, меди и свободную серную кислоту. Коррозионные образования в трубках пароперегревателей кроме окислов железа содержат хром, марганец, молибден и другие вещества. Эти материалы отличаются исключительной стойкостью, и обычно их удается перевести в раствор лишь нагреванием в смеси серной и фосфорной кислот. Сплавление с содой, едкими щелочами, пирофосфатом или гексаметафосфатом натрня практически не приводит к разложению этого материала. Отложения из парогенераторов высокого давления содержат в различных соотношениях окислы железа и алюминия, кремниевую кислоту, фосфаты железа, алюминия и кальция, металлическую медь, а иногда соединения цинка и магния. В качестве менее существенных примесей, а иногда и следов в накипи присутствуют марганец, хром, олово, свинец, никель, молибден, титан, вольфрам, стронций, барий, сурьма, бор, ванадий и некоторые другие элементы. При обычном анализе ограничиваются определением фосфатов, кремниевой кислоты, железа, меди, алюминия, натрия, кальция, магния и сульфатов. [c.411]

    Дезодоранты и озоновый щит планеты. Каждый знает, что дезодоранты — это средства, устраняющие неприятный запах пота. На чем основано их действие Пот выделяется особыми железами, расположенными в коже на глубине 1—3 мм. У здоровых людей на 98—99 % он состоит из воды. С потом из организма выводятся продукты метаболизма мочевина, мочевая кислота, аммиак, некоторые аминокислоты, жирные кислоты, холестерин, в следовых количествах белки, стероидные гормоны и др. Из минеральных компонентов в состав пота входят ионы натрия, кальция, магния, меди, марганца, железа, а также хлоридные и иодидные анионы. Неприятный запах пота связан с бактериальным расщеплением его составляющих или с окислением их кислородом воздуха. Дезодоранты (косметические средства от пота) бывают двух типов. Одни тормозят разложение выводимых с потом продуктов метаболизма путем инактивации микроорганизмов или предотвращением окисления продуктов потовыделения. Действие второй группы дезодорантов основано на частичном подавлении процессов потовыделения. Такие средства называют антиперспира-нами. Этими свойствами обладают соли алюминия, цинка, циркония, свинца, хрома, железа, висмута, а также формальдегид, таннины, этиловый спирт. На практике из солей в качестве антиперспиранов чаще всего используют соединения алюминия. Перечисленные вещества взаимодействуют с компонентами пота, образуя нерастворимые соединения, которые закрывают каналы потовых желез и тем самым уменьшают потовыделение. В оба типа дезодорантов вводят отдушки. [c.107]


    Алюминий Железо Кадмий. Калий Кальций Магний. Марганец Медь. . Натрий Николь Платина Ртуть Свинец. Серебро. Хром. . Цинк. .  [c.15]

    Гравиметрические методы определения. Красный осадок соединения кобальта (III) с 1-нитрозо-2-нафтолом примерного состава Со(СюНб02 )з-пН20 образуется в слабокислых (pH 3.8—4,0), нейтральных и аммиачных растворах. Образовавшееся соединение при подкислении не разрушается. Мешают осаждению кобальта серебро, висмут и олово. Железо и вольфрам можно маскировать фторид-ионом. Не мешают осаждению кобальта равные по содержанию количества никеля, алюминия, кадмия, кальция, магния, бериллия, хрома, свинца, марганца, цпнка, сурьмы, мышьяка, ртути. В присутствии больших количеств никеля проводят переосаждение кобальта. После высушивания при 115°С состав соединения становится постоянным (п = 2), и оно применимо для гравиметрического определения содержания кобальта. В некоторых случаях отделение Со от сопутствующих элементов проводят осаждением в виде кобальтинитрита (гексанитрокобальтата III) каль я  [c.71]

    Элементарный состав сухого активного ила (в %) С 44—75,8 Н 5—8,2 О 12,5—43,2 N 3,3—9,8 5 0,9—2,7. Минеральная часть ила содержит соединения кремния, алюминия, железа, кальция, магния, калия, натрия, цинка, никеля, хрома и др. [c.564]

    К 5—10 мл растворов (0,1 М) хлоридов или сульфатов алюминия, цинка, железа, хрома, кальция, магния или меди прилейте немного раствора щелочи. Если растворы щелочи и соли имеют одну и ту же концентрацию, сколько миллилитров щелочи следует прилить, чтобы получить максимальное количество осадка гидроксида Декантируйте раствор, а осадок разделите на две части, перенесите половину в другую пробирку. [c.203]

    Для снижения потерь на катодное восстановление предложено в электролит вводить добавки, образующие на катоде слой, который выполняет функции диафрагмы и затрудняет диффузию ионов СЮ и СЮз" к поверхности катода. В качестве таких добавок могут применяться соли хрома, кальция, магния, ванадия и др. Практическое применение находят соли хрома [36, 63—69]. [c.38]

    Если перл, полученный как в окислительном, так и в восстановительном пламени газовой горелки, прозрачен и бесцветен в нагретом и охлажденном состоянии, то это указывает на отсутствие в исходном анализируемом образце катионов меди, серебра, сурьмы, висмута, титана, ванадия, хрома, молибдена, вольфрама, урана, марганца, железа, кобальта, никеля. Возможно, однако, присутствие катионов щелочных металлов, кальция, магния, цинка, кадмия, алюминия, свинца, олова. Если охлажденные перлы — белые (имеют вид белой эмали), то возможно присутствие в исходном анализируемом образце небольших количеств стронция или бария. [c.506]

    Эта подсубпозиция также включает нерастворимые в воде соли нафтеновых кислот (например, соли алюминия, бария, свинца, хрома, кальция, магния, кобальта, цинка) и сложные эфиры этих кислот. [c.401]

    S(xr в lo мл. Окраска изменяется от золотисто-желтой через оранжевую и розовую и розовато-малиновую в зависимости от концентрации солей свинца в исследуемом растворе. К недостаткам метода следует отнести его чувствительность к наличию в воде катионов меди, кадмия, никеля и железа, которые мешают определению свинца. Указанные катионы, кроме меди и железа, маскируются добавлением тиомочевины. Ионы хрома, кальция, магния, бария, стронция, хлора не мешают определению свинца. [c.13]

    Отделение фосфатов бария, стронция, кальция, магния, марганца, железа III), хрома, алюминия. Исследуемый раствор обрабатывают избытком концентрированного водного раствора NHg. [c.196]

    Шестивлентный вольфрам не дает с 8-оксихинолин-5-суль-фокислотой каких-либо окрашенных соединений и при условиях Определения молибдена не восстанавливается, а поэтому не влияет на результаты определения молибдена. Однако в присутствии больших количеств вольфрама (больше 10 мг) нужно увеличить количество добавляемого реагента. Определению молибдена мешают ванадий, двухвалентное железо, кобальт, цинк, большие количества меди, комплексон III и винная кислота. Кальций, магний, барий, никель, кадмий, двухвалентный марганец, трехвалентный хром, алюминий, торий, небольшие количества висмута и урана, цианид, щавелевая кислота не мешают определению молибдена. [c.228]

    Соединения других металлов обнаружены в отработанных маслах в количествах от следов до 0,1 % мае., это в основном барий, кальций, магний, цинк, натрий, алюминий, хром, медь, железо, калий, кремний и олово количество металлов в выбросах при сжигании отработанного масла зависит от вида последнего. [c.66]

    Стеараты и нафтенаты кальция, алюминия, бария, кадмия, хрома, кобальт , магния, мар-, ганца, олова или стронция [c.324]

    Отложения состоят из золы, угля, смол, продуктов коррозии, эрозии и катализатора, который загрязняет воду башен и оттуда увлекается в нагнетатель. Катализатор состоит из окислов кремния, железа, хрома, алюминия, кальция, магния с преобладанием последнего. Объемная доля MgO составляла 60 %. [c.14]

    Разложение окиси азота на металлических и окисных катализаторах исследовали авторы работ 251, 268— 281]. Установлено, что эта реакция ингибируется кислородом. По данным работы [271], кислород, образующийся в реакции, оказывает более значительное влияние на скорость процесса по сравнению с кислородом, добавленным к N0 в качестве разбавителя. Это различие обусловлено тем, что при разложении N0 образуется атомарный кислород, адсорбирующийся на поверхности катализатора. Адсорбция атомарного кислорода приводит к уменьшению числа активных центров и, следовательно, к снижению активности катализатора с повышением степени разложения N0. В области низких температур катализатор по этой причине может оказаться полностью инактивированным. На это указывают, в частности, экспериментальные результаты Мюллера и Барка [268], выполнивших качественное исследование разложения окиси азота на меди, железе, цинке, серебре, свинце, алюминии, олове, висмуте, кальции, магнии, марганце, хроме, латуни, окислах олова и ванадия. Их эксперименты осуществлены в статических условиях при длительном выдерживании окиси азота в контакте с металлическими спиралями или мелкими кусками исследуемых металлов. [c.104]


    II литий замещается другими элементами, в результате чего в минерале присутствуют натрий и в небольших количествах кальций, магний, иногда хром и другие элементы некоторые разновидности сподумена содержат также редкоземельные элементы и иногда цезий [40]. [c.181]

    Обычно при титровании ионов металлов ЭДТА при pH 10 в конечной точке титрования фиолетовый цвет раствора (наложение синего цвета индикатора на красный цвет комплексного соединения) изменяется на чисто синий (цвет индикатора комплексы металлов кальция, магния, цинка и др. с ЭДТА бесцветны). Эрио-хромов 1Й черный Т обладает очень интенсивной окраской, поэтому его готовят, смешивая с сухим хлорицом натрия в отношениях от 1 100 до 1 400. Для каждого титрования берут шпателем 20-30 мг смеси. [c.117]

    Н2О, не отфильтровывая, растворяют добавлением ацетона, измеряют оптическую плотность красного раствора при 530 ммк [63]. Оптическая плотность не изменяется 3 часа. Растворы подчиняются закону Бера до концентрации не выше 20 ммк мл Мо. Не мешают кальций, магний, небольшие количества кадмия, никеля, цинка, железа, трехвалентного хрома. Мешают Мп, Си, Се, Т1, W. [c.227]

    Сульфонаты кадмия, алюминия, кальция, хрома, кобальта, магния, марганца, олова или цинка и органические фосфорсодержащие кислоты. ................... [c.323]

    Различают промоторы структурирующие (способствующие получению и сохранению активного компонента катализатора в диспергированном состоянии) и активирующие (повышающие каталитическую активность единицы поверхности активного компонента катализатора). В настоящее время принято считать, что во многих случаях структурирующая и активирующая функции катализатора совмещаются. Произведенная нами проверка показала, что такие широко распространенные промоторы металлических катализаторов, как окислы алюминия, хрома, бериллия, магния, кальция и других металлов, трудно восстанавливаемых из окислов, проявляют исключительно структурирующее действие по отношению к никелю, использованному в качестве катализатора в реакции разложения метана на элементы. При этом промоторы образуют следующий ряд (в порядке понижения эффективности)  [c.60]

    Получение хрома. Известно много методов получения металлического хрома восстановление окиси хрома углеродом, водородом, щелочными металлами, кальцием, магнием, алюминием (алю-мотермический метод), кремнием (силикотермический метод), силицидами кальция или алюминия, ферросилицием, карбидом [c.7]

    Элементный состав осадков изменяется в широких пределах. В частности, в сухом веществе осадков первичных отстойников содержится, % 35-88 С 4,5-8,7 Н 0,2-2,7 8 1,8-8 Ы 7,6-35,4 О. Сухое вещество активного ила имеет, % 44-76 С 5-8 Н 0,9-2,7 8 3,3-9,8 12,5-43,2 О (Туровский). В осадках присутствуют также соединения кремния алюминия, железа, кальция, магния, калия, натрия, цинка, хрома, никеля и др. [c.339]

    Второй путь минерализации силоксановой резины — сплавление с содой. Наличие осадка после выщелачивания плава в воде указывает на присутствие соединений кальция, магния, цинка, железа и др., желтая окраска раствора свидетельствует о присутствии соединений хрома. [c.112]

    Для восстановления металлов из очень прочных оксидов применяют металлотермию — процесс восстановления при высокой температуре, в котором восстановителем служит другой металл — чаще всего кальций, магний или алюминий. В частном случае, когда восстановителем является алюминий, этот способ восстановления называется алюминотермией, или алюмотермией. Так из оксидов получают ванадий, хром, марганец. Напрпмер  [c.173]

    Замещения в октаэдрических слоях монтмориллонита дают его минералогические разновидности. Так, замена алюминия магнием дает р-керолит (по И. И. Гинзбургу), сапонит и гекторит, замена железом — нонтронит, цинком — соконит, хромом — волконскоит. К существенным различиям приводят и замещения в обменном комплексе. В зависимости от преобладания в нем катионов натрия, кальция, магния и других получают Na-монтмориллонит, Са-монт-мориллонит и т. п. [c.21]

    Таким образом, предсказать форму аналитического сигнала, как и следовало ожидать, при использовании принятой в этой работе модели оказалось невозможным. Однако удалось определить весьма важные для практики параметры, и прижде всего так называемую температуру появления Та, т. е. температуру, соответствующую моменту появления сигнала абсорбции (точнее, моменту, когда величина сигнала A = 2sa), и энергию активации. Были проведены опыты с хлоридами и нитратами свинца, меди, кобальта, никеля, железа, хрома, кальция, магния, кадмия, цинка, марганца, алюминия и хлоридом олова в виде растворов в 5%-ных хлористоводородной и азотной кислотах, соответственно, а также растворами молибдата аммония и ванадия и олова в NaOH, и амальгамами свинца и меди. Во всех случаях определяли температуру появления, а также энергию активации. Полученные данные представлены в табл. 2.4. Кроме того, в ней приведены значения AG реакции восстановления металла для температур, ближайших к температуре появления. [c.99]

    Кроме ванадия и никеля в остатках обнаружены натрий, кальций, магний, которые концентрируются во фракциях смол, железо (в асфальтенах), а также следы ишогих других металлов (медь, хром, титан, кобальт, молибден, свинец, олово, цинк, марганец и др.). [c.18]

    Разделение 1-нитрозо-2-нафтолом. Кобальт можно осадить или экстрагировать 1-нитрозо-2-нафтолом из растворов, содержащих ртуть, никель, хром, марганец, свинец, цинк, алюминий, кадмий, магний, кальций, бериллий, сурьму и мышьяк для удержания в растворе сурьмы необходимо прибавить винную кислоту [1467]. Кобальт отделяется вполне удовлетворительно от катионов ртути (II), олова (II), свинца, кадмия, мышьяка, сурьмы, алюминия, марганца, кальция, магния, висмута и никеля [755]. Однако в присутствии больших количеств никеля и олова, особенно если в растворе находится также висмут, осадки содержат большие или меньшие количества этих элементов. Пред-ттолагается, что мешающее влияние олова обусловлено образованием соединения, содержащего одновременно олово и кобальт. Полностью или частично осаждаются вместе с кобальтом медь (pH 4—13), железо (pH 0,95—2,0), ванадий (pH 2,05— 3,21), палладий (pH 11,82) и уран (pH 4,05—9,4). (Указанные границы pH осаждения взяты из работы [1402].) [c.74]

    В хромомагнезитовом огнеупоре преобладают окислы хрома и магния, основу большей части других огиеуноров также составляют эти 10КИСЛЫ и, кроме того, окислы кальция, алюм нпня и кремния. Судя ио предварительно полученным результатам, огнеупоры, содержащие окислы магния, кальция и хрома, не могут быть применены для строительства реакторов, установок облагораживания нефтяного кокса. Это подтверждается и опытами по обессери-ванию коксов, озоленных хромомагнезитовой крошкой. [c.246]

    Определение молибдена в искусственной смеси выполняют таким же образом, как и при построении калибровочной кривой, только с тем отличием, что кислотность сначала доводят до слабокислой по универсальной индикаторной бумаге. Кальций, магний, кобальт, цинк, никель, кадмий, двухвалентный марганец, трехвалентный хром и четырехвалентный церий, комплексон III, винная кислота и ЫагНР04 при количестве <50 мг не мешают [c.228]

    Химический состав сухого вещества осадков колеблется в широких пределах. Сухое вещество сырьк осадков имеегг следующий состав (% массы сухого вещества осадка) 35,4—87,8 С, 4,5—8,7 Н, 0,2—2,7 8,1,8—8 К, 7,6—35,4 О сухое вещество активного ила содержит, % 44,0—75,8 С. 5—8,2 Н, 0,9—2,7 8,3,3—9,8 N. 12,5-43,2 О. В осадках содержатся соединения кремния, алюминия, железа, оксидов кальция, магния, калия, натрия, цинка, никеля, хрома и др. (см. табл. 8.1), а также ряд других соединений и микроэлементов. [c.259]

    Отделение кобальта фенилтиогидантоиновой кислотой. Фенилтиогидантоиновая кислота СбНзЫНСЗЫНСНзСООН, впервые предложенная как реагент обнаружения кобальта [1193], применяется для отделения кобальта от ряда элементов. Реагент выделяет ионы кобальта в а.м.миачно.м растворе в виде пурпурнокрасного осадка непостоянного состава. В аммиачно-цитратном растворе осаждаются полностью также сурьма и медь, частично никель, хотя осадок никелевой соли растворим в концентрированном аммиаке. Соли трехвалентного железа также несколько загрязняют осадок фенилтиогидантоината кобальта. Однако ионы мышьяка, урана, ванадия, титана, вольфрама, молибдена, цинка, марганца, хрома, алюминия, магния и кальция осадков не образуют. Методика отделения такова [1490]. [c.70]

    Руды и промпродукты медно-никель-кобальтового производства. Определение массовых долей меди, никеля, кобальта, железа методом атомно-эмиссионной спектрометрии с индуктивно-связанной плазмой (ИАЦ РАО Норильский никель ) Руды, концентраты, промежуточные и отвальные продукты. Определение массовых долей кремния, алюминия, кальция, магния, железа, хрома, марганца, титана, ванадия, калия и натрия методом атомно-эмиссионной спектрометрии с индуктивно-связанной плазмой (ИАЦ РАО Норильский никель ) Минеральное сырье, руды, продукты их переработки, содержащие свинец, цинк, кадмий и мышьяк. Определение массовых долей свинца, цинка, кадмия и мышьяка методами атомной спектрометрии (ИАЦ РАО Норильский никель ) Никель. Методы химико-атомноэмиссионного спектрального анализа [c.823]

    В составе нефти в очень мальк количествах присутствуют и другие элементы, главным образом металлы алюминий, железо, кальций, магний, ванадий, никель, хром, кобальт, германий, титан, натрий, калий и др. Обнаружены также фосфор и кремний. Содержание этих "злементов не превышает нескольких долей процента, определяется геолог(гческими условиями залегания нефти. Так, основным элементами мезозойских и третичных нефтей является железо. В па-1еозойских нефтях Волго-Уральской области повышенное содержание ванадия и никеля. Считается, что часть микроэлементов находится в нефти с момента её образования в осадочных породах, а другая часть накашшвается в последующий период существования нефгей. [c.12]

    При гетерометрическом титровании ионов кобальта раствором 1-нитрозо-2-нафтола [465, 466] в этанольных и в 50%-ных уксуснокислых растворах максимум помутнения наблюдается при соотношении Со + HR, равном 1 4, или Маз[Со(М02)е] HR, равном 1 3. В 50%-ных этанольных растворах, содержащих тартрат натрия, во всех случаях максимум оптической плотности находится при соотношении o HR=l 2. Большие количества алюминия, хрома, свинца, кадмия, цинка, бария, кальция, магния не мешают. В цитратном растворе можно определять кобальт также в присутствии никеля. [c.128]

    Отин и Савенку [36] исследовали действие различных катализаторов при крекинге керосина уд. веса 0,801 при 20° С и вьщипающего от 139 до 295° С при перегонке по Энглеру. Температура опытов изменялась от 100 до 254° С, давление — от 1 до 20 ат, продолжительность реакции во всех опытах была 2 часа. После каждого опыта производили разгонку по Энглеру и определяли химический состав керосина. Различные металлы (калий, натрий, магний, цинк, никель, олово, железо и алюминий), окислы (кальция, магния, цинка, железа и алюминия), хлориды (калия, натрия, кальция, магния, цинка, железа, хрома и алюминия) и сульфаты применялись как катализаторы в количестве 5% вес. на керосин. Со всеми этими катализаторами, за исключением хлористого алюминия, выход продуктов разложения был очень небольшой. При самых жестких условиях (200—230° С) и продолжительности, равной двум часам, выход фракции до 150° С, которой в исходном продукте содержалось 3%, или оставался неизменным (3%) или же увеличивался до 4—6% и до 8% при применении хлорного железа. Только в присутствии хлористого алюминия количество этой фракции возрастало до 34%. [c.149]

    Реагенты. Графитовый порошок, ос.ч., серная кислота х.ч., сера ос.ч., окислы ванадия, никеля, титана, хрома, марганца, железа, кремния, кальция, магния, алюминия ч.д.а., хлористый свинец ч., хлористый натрий ос.ч. Спирт этиловый. Реактивы для проявления и заврепления фотопластинок. [c.83]

    Методика выполнения измерений. Воды природные, питьевые и сточные. Определение содержания металлов (натрия, кал11я, кальция, магния, алюминрш, железа, марганца, меди, никеля, кобальта, хрома, цинка, кадмия и свинца) методом атомно-эмиссионной спектрометрии с индуктивно-связанной плазмой (ИАЦ РАО Норильский никель ) [c.823]

    Few, >2 TiOSD - I.I // о - 64,2 сульфаты алюминия, магния, марганца, ванадия, хрома, кальция. Присутствуют также скандий, цЕфконий и гафний. На I т готового продукта образуется 2,294 т железного купороса и 8,599 т гидролизной серной кислоты. Как правило, гидролизная кислота концентрифуется упариванием, а шлам, включающий до 45-55 % сульфата железа и 16-25 % , не [c.6]


Смотреть страницы где упоминается термин Хромиты кальция и магния: [c.67]    [c.246]    [c.198]    [c.177]    [c.16]    [c.50]    [c.94]   
Смотреть главы в:

Технология соединений хрома -> Хромиты кальция и магния




ПОИСК





Смотрите так же термины и статьи:

Вайнштейн, Г. В. Михайлова, М. В. Ахманова, Ю. И. Куценко. Метод спектрального определения железа, кальция, магния, хрома, никеля, кремния и бора в цирконии

Определение железа, алюминия, кальция, магния, меди, марганца, J кобальта, кадмия, хрома, свинца, никеля, молибдена, ванадия в я активных углях и цинк-ацетатных катализаторах на их основе

Отделение железа, алюминия, хрома, урана, циркония и титана от марганца, кобальта, никеля, цинка, кальция, стронция, бария, магния и щелочных металлов

Отделение железа, алюминия, хрома, циркония и титана от марганца, кобальта, никеля, цинка, кальция, стронция, бария, магния и щелочей

Плутоний, активность бора, железа, кальция, магния, марганца, меди, никеля, свинца, хром

Прямое определение железа, кадмия, кальция, кобальта, магния, марганца, меди, никеля, свинца, серебра, хрома и цинка

Спектральное определение алюминия, кальция, кобальта, хрома, меди, железа, магния, марганца, никеля, титана и ванадия в двуокиси кремния и кварце

Спектральное определение железа, кальция, магния, хрома, никеля, кремния и бора в цирконии

Химико-спектральное определение алюминия, висмута, галлия, железа, золота, индия, кальция, магния, марганца, меди, никеля, свинца, сурьмы, олова, серебра, таллия, тантала, титана, хрома и цинка в германии, двуокиси германия и тетрахлориде германия

Химико-спектральное определение меди, серебра, кадмия, магния, марганца, висмута, алюминия, титана, индия, кальция, свинца, хрома, кобальта, никеля и цинка в сурьме

Химико-спектральное определение серебра, алюминия, магния, индия, молибдена, циркония, железа, титана, меди, марганца, никеля, свинца, хрома, олова, висмута, галлия, кальция, цинка и сурьмы в трихлорсилане без применения гидролиза

цинк нафтил линейный высокомолекулярный ванадий, циклопентадиенилы кальций арилы магний метил хром



© 2025 chem21.info Реклама на сайте