Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кобальт от меди

    Фотометрия пламени — вид эмиссионного спектрального анализа, в котором источниками возбул<дения спектров являются пламена различных видов ацетилен — воздух, ацетилен — кислород, пропан — воздух, пропан — кислород, водород — воздух и др. Вследствие невысокой температуры в пламенах излучают легко и среднеионизующиеся элементы щелочные и щелочноземельные металлы, галлий, индий, магний, марганец, кобальт, медь, серебро и ряд других, причем их число растет с увеличением температуры пламени. В наиболее холодных пламенах, таких как, например, пропан — воздух, светильный газ — воздух излучают только атомы щелочных и щелочноземельных металлов. Вследствие невысокой температуры спектры, излучае-МЕле пламенами, состоят из небольшого числа спектральных линий, главным образом резонансных, что позволяет выделять характеристическое излучение элементов при помощи светофильтров и использовать простые и имеющие невысокую стоимость спектральные приборы — пламенные фотометры. Кроме атомных спектральных линий в спектрах пламен присутствуют полосы ряда в основном двухатомных молекул и радикалов С2, СиС1, СаОН и др. Некоторые из них используют в аналитических целях. Так, в случае элементов, образующих термически устойчивые оксиды, которые практически не диссоциируют в пламенах с образованием свободных атомов, молекулярные спектры являются единственным источником аналитического сигнала. Практически не атомизируются в низкотемпературных пламенах оксиды скандия, титана, лантана и других элементов, ирлеющих относительно невысокие потенциалы ионизации. Наиболее часто фотометрию пламени применяют для определения щелочных и щелочноземельных металлов. [c.35]


    Мурексид образует с ионами кальция, никеля, кобальта, меди и редкоземельных металлов устойчивые комплексы, которые можно использовать при титровании. В отличие от эриохрома черного Т, комплексы металлов с мурексидом являются рН-ин-дикаторами. Окраска комплекса металла с мурексидом зависит [c.186]

    Драгоценные металлы извлекают из отработанных катализаторов для повторного использования, а большинство наиболее часто используемых в катализаторах металлов, среди которых и такие дорогостоящие, как никель, кобальт, медь, хром, повторно не используется. Этому препятствует главным образом присутствие в отработанном катализаторе органических остатков. Хотя удаление органических остатков удорожает процесс извлечения металлов, его необходимо проводить, так как в противном случае нарушается технология разделения металлов и загрязняются сточные воды. Вторичному использованию металлов катализаторов мешает также то обстоятельство, что многие [c.28]

    Несмотря на то, что положительные катализаторы для производства ацетилена из метана неизвестны, многие вещества обладают отрицательным влиянием на выходы ацетилена. Эти вещества, по-видимому, промо-тируют разложение метана на углерод и водород. К таким веществам относятся обычно металлы железо, никель, кобальт, медь, платина и палладий [80, 95]. Отсюда следует, что аппаратура для термического крекинга метана не должна включать такие металлы или их окислы. [c.70]

    Назначение. Деактиваторы (инактиваторы, пассивато-ры) металлов — это присадки, подавляющие каталитическое действие металлов на окисление топлив. Деактиваторы, как правило, добавляют к топливу совместно с антиокислителями в концентрациях, в 5—10 раз меньших, чем антиокислитель. Они могут быть также компонентами двух- и трехкомпонентных присадок [1 — 11]. Установлено, что металлы переменной валентности являются сильными катализаторами окисления углеводородных топлив [1—5, II —17]. Металлы постоянно контактируют с топливами — в нефтезаводской, перекачивающей аппаратуре и в двигателях, входят в виде микропримесей в их состав. В топливных дистиллятах обнаружено присутствие алюминия, берилия, ванадия, висмута, железа, золота, кремния, калия, кальция, кобальта, меди, молибдена, натрия, никеля, олова рубидия, серебра, свинца, стронция, титана, цинка и др. [18—21]. [c.122]

    Первый патент по каталитической гидрогенизации ацетилена в этилен появился в 1912 г. [68]. В этом патенте сообщалось, что катализатором гидрогенизации является любая смесь, содержащая один или несколько элементов из группы железо, никель, кобальт, медь, серебро, магний, цинк, кадмий, алюминий с одним или несколькими представителями группы платина, осмий, иридий, палладий, родий, рутений. [c.240]


    На поверхности катализатора бензол может адсорбироваться либо всей плоскостью, либо одним из ребер. По А. А. Баландину это будут соответственно секстетная и дублетная модели. В случае плоскостной хемосорбции (секстетная модель) размеры молекулы бензола и расстояния между атомами металла должны соответствовать друг другу. Мультиплетная теория А. А. Баландина по параметрам решеток металлов постулирует, что катализаторами гидрирования и дегидрирования могут быть только металлы никель, кобальт, медь, рутений, иридий, палладий, платина, родий, осмий,. рений. Это подтверждено экспериментально, за исключением меди, на которой гидрирование бензола часто не наблюдалось. Однако считают что это исключение кажущееся и незначительная активность меди объясняется энергетическими факторами. [c.131]

    Кинетические закономерности каталитического окисления дизельного топлива изучали по поглощению кислорода манометрическим методом при 100-140°С. В качестве катализаторов исследовали соли кобальта, меди, хрома и железа [83, 89]. [c.109]

    Эксперименты, проведенные нами на катализаторах, содержащих менее 0,01—0,02 вес.% металлов, дали интересные результаты. Металлы, обладающие сильными дегидрирующими свойствами, например никель, кобальт, медь, вызывают резкое уменьшение активности катализатора. Так, при содержании на катализаторе [c.141]

    Впервые Стефенс в 1926 г. [127] изучил окисление изопропилбензола и показал, что при действии на него в течение 3—5 недель кислорода при 80—104° С образуются ацетофенон и муравьиная кислота. Позже был взят ряд патентов на окисление изопропилбензола в ацетофенон и диметилфенилкарбинол [122, 123, 134, 135]. В качестве катализаторов рекомендуются гидроокись кальция, окись хрома и карбонат кальция, окись и гидроокись железа, марганца, кобальта, меди, серебра и бензойнокислое железо. [c.259]

    Ко второй группе относятся кобальт, медь и никель. Добавление их к катализатору способствует существенному увеличению выхода кокса зто зависит не только от природы металла, но и от его содержания в образце (см. рис. 70). По сравнению с исходным катализатором выход кокса на образцах, содержащих 0,5— 0,7 вес. % никеля, меди и кобальта, увеличивается в 3,2—3,5 раза. [c.163]

    Катализаторы конверсии окиси углерода могут быть приготовлены на основе окислов железа, хрома, никеля, кобальта, меди, цинка, магния и других металлов. Наиболее распространены катализаторы на основе окиси железа, активные при 400—450 С. Состав их следующий (в вес. %) РегОз 51—90 СггОз 5—10 MgO до 16 остаточное содержание 50з 0,5—5,2 (227]. [c.89]

    В целях экономии легированных сталей и цветных металлов для применения оборудования, материалов, кабельных изделий, содержащих нержавеющие, конструкционные и инструментальные стали и остродефицитные цветные металлы (никель, вольфрам, молибден, кобальт, меДь, олово, свинец, цинк) необходимо получить разрешение Межведомственной комиссии при Госснабе СССР (МВК). Материалы для получения разрешения МВК выполняются на стадии рабочей документации и представляются в виде сборников по производствам, пусковым комплексам и очередям строительства. Сборники оформляются отдельно на оборудование и трубопроводы и отдельно на кабельные изделия. В состав сборника [c.99]

    Взвешенные частицы анализируют на содержание ионов фтора, нитратов, сульфатов и аммиака, а также мышьяка, бериллия, висмута, кадмия, хрома, кобальта, меди, железа, свинца, марганца, молибдена, никеля, селена, олова, ванадия и цинка. Улавливаются и анализируются также асбест, бор, силикаты. [c.100]

    Так как марганец не образует подобных соединений с кобальтом, медью и никелем, то не следует ожидать, что добавка марганца устранит отрицательное влияние этих металлов на коррозионное поведение сплава. [c.352]

    Способность водорода присоединяться по месту кратных углеродных связей известна уже давно. Еще в середине XIX в. М. Фарадей, проведя реакцию взаимодействия водорода с этиленом над платиной, осуществил превращение этилена в этан. Однако долгое время разрозненные наблюдения отдельных авторов казались лишенными интереса. Лишь после того, как было открыто замечательное свойство некоторых восстановленных металлов, например никеля, кобальта, меди [1], способствовать гидрированию, т. е. насыщению водородом алифатических и ароматических кратных связей, каталитическое гидрирование начало быстро развиваться. В настоящее время им широко пользуются в исследовательской работе для изучения числа и характера насыщенных связей, определения строения неизвестных соединений, например природных веществ. Внедрение гидрирования в технику явилось стимулом для грандиозного развития процессов деструктивного гидрирования, синтезов из окислов углерода, облагораживания топлива и многочисленных реакций восстановления. [c.338]

    Наиболее существенные помехи анализу создают элементы 1В- и VIИ> групп, в том числе никель, кобальт, медь, железо и др. Взаимодействие образующихся гидридов с этими ме- [c.173]

    Электролиз аммиачных растворов применяется в том случае, если определяемый ИОН образует растворимый аммиакат. Это имеет место при определении никеля, кобальта, меди и др. На катоде осаждается металл, на аноде выделяется кислород. [c.199]


    Броматометрическим методом определяют алюминий, кадмий, кобальт, медь, свинец, уран, цинк и многие другие элементы. [c.289]

    Наряду с жидкими и газообразными окислителями для очистки сточных вод применяются и твердые оксиды и гидроксиды металлов переменной валентности (никеля, кобальта, меди, железа, марганца). Гидроксид никеля высшей валентности легко окисляет тидразингидрат, спирты, альдегиды, алифатические и ароматические амины. Продуктами окисления являются в основном карбонаты, азот и вода. Метод рекомендуется для обезвреживания сточных вод с концентрацией токсичных соединений до 0,5 г/л, что является его недостатком. [c.494]

    При жидкофазном окислении ацетальдегида в уксусную кислоту в качестве катализатора чаще всего используют ацетат марганца (0,05—0,1 % масс, по отношению к ацетальдегиду), проводя реакцию при 50—80 °С. Выбор и количество катализатора и температура во многом определяются тем, чтобы создать благоприятное соотношение между скоростями отдельных стадий цепного процесса. Так, применение других катализаторов (соли кобальта, меди, железа) и снижение температуры ведут к чрезмерному накоплению надкиспоты, что увеличивает взрывоопасность производства. Верх- [c.405]

    Скелетные катализаторы, пли катализаторы Ренея, получают сплавлением активного металла, например никеля, кобальта, меди, с алюминием нли магнием, а затем последние удаляют выщелачиванием. В результате этого получаются активные, чуть ли не атомарно-дисперсные металлы. Так называемый никель Ренея весьма активен, но недостаточно селективен, очень чувствителен к термической дезактивации и химическому отравлению. Однако это не препятствует его широкому применению при гидрировании жидких растительных масел в твердые пищевые жиры, когда крайне важна способность частиц никеля оседать из продуктов гидрирования. Другой привлекательной чертой скелетных катализаторов является возможность их активации при низких температурах в простых аппаратах без отдельной установки для восстановления и даже без самой стадии вос-сгановленпя. Таким образом исключаются операции восстановления и стабилизации катализатора, что упрощает технологию. [c.110]

    При нанесении металлов на алюмосиликатный катализатор в газах крекинга возрастает количество водорода, сухого газа и уменьшается количество тяжелой его части. Абсолютные значения этих величин зависят от природы металла и его содержания на катализаторе. Наиболее резко состав газов в указанном направлении изменяется при содержании на катализаторах никеля, кобальта, меди, менее всего — при содержании железа, хрома свинца. С увеличением концентрации металла на катализаторе указанные тенденции усиливаются. Так, при содержании на катализаторе 0,16 вес. % никеля концентрация водорода в газе 10,5 вес. %, а сухого газа 42,0 вес. %, что соответственно в 35 и 14 раз больше, чем в газе крекинга, полученном на исходном ката.дизаторе. В то же время количество пропан-пропиленовой и бутан-бутиленовой фракции уменьшается в 1,2 раза. При содержании на катализаторе 0,5 вес. % никеля концентрация водорода в газе увеличивается в 50 раз, сухого газа — в 16 раз, а концентрация пропан-пропиленовой и бутан-бутиленовой фракций уменьшается соответственно в 1,2 и 1,4 раза. [c.159]

    Окисление проводится в реакторе 1 из нержавеющей стали в интервале температур 160—190 °С и при давлении 4,8 МПа без катализатора или в присутствии солей кобальта, меди, магния, ванадия. Воздух подается в нижнюю часть реактора в таком количестве, чтобы содержание кислорода в отдувочном газе составляло не более 4% (об.). Пары продуктов реакции и непрореагировавшие углеводороды поступают совместно с отработанным воздухом в конденсационную систему 2—4, приспособленную для утилизации теплоты. Отсюда жидкий конденсат возвращается в зону реакции. Отработанный воздух поступает в турбодетандер 5, где охлаждается до —60 °С. Полученный холод используют на установке. Оксидат из реактора поступает в ректификационную колонну 7, в которой отделяются нейтральные кислородсодержащие продукты, возвращаемые на доокис-ление в реактор 1. На колонне 8 происходит отделение воды и кислот С —С4, а тяжелый кубовый остаток, пройдя блок выделения янтарной кислоты 9, поступает на повторное окисление. Вода от кислот отгоняется с помощью азеотропной перегонки (блок 10). Товарные муравьиная, уксусная и пропионовая кислоты выделяются с применением азеотропной и обычной ректификации (блоки 11—13). Суммарный выход кислот С —С и янтарной кислоты в расчете на превращенный бензин находится на уровне 100—110%, причем выход уксусной кислоты составляет 60—75% от товарной продукции и зависит от технологии проведения процесса и используемого для окисления сырья. [c.178]

    Вначале при гидрировании ароматических углеводородов использовали металлические катализаторы никель, кобальт, медь, платину и палладий, полученные восстановлением соответствующих окислов водородом [1, 187, 188]. В настоящее время среди катализаторов гидрирования органических соединений, в частности ароматических углеводородов, наиболее известны никель Ренея [8], окись платины Адамса, никель, кобальт и [c.83]

    В качестве катализаторов жидкофазиого окисления пропилена предлагается использовать суспензию меди, серебра или их окислы. Выход окиси достигает 877о- Предложены также соли кобальта, меди, марганца, ванадия, хрома, промотированные солями бария или свинца. [c.284]

    Соли хлор-, бром- и нитробепзолсульфокислот дают плохо растворимые в воде комплексные соединения с аммиакатами никеля, кобальта, меди и других металлов [17]. Не содержащие аммиака соли растворяются значительно лучше, однако комплексные аммиачные соли сульфокислот с другими замещающими группами растворимы лучше, чем простые соли. [c.199]

    Образование кокса дегидрогенизационного определяется природой металла и его эффективным содержанием на катализаторе [101, 102]. Так, кобальт, медь и пикелЬг осажденные на катализаторе, способствуют увеличению выхода кокса. Ванадий, молибден, хром, свинец и железо при высокой концентрации также приводят к росту выхода кокса, но в меньшей степени, чем никель особенностью этих металлов является способность снижать выход кокса при небольшом их содержании на катализаторе [101]. Для всех тяжелых металлов наблюдается снижение дегидрогенизаци-онной активности в циклах реакции — регенерации , и поэтому влияние на выход кокса оказывает только содержание эффективных металлов (см. гл. 3). [c.144]

    При совместном пропускании этилена, окиси углерода и водорода пад кобальт-медь-маргапцевым катализатором нри 204 было получено масло, состоявшее из альдегидов и спиртов. Часть этилеиа гидрировалась в этаи, а остальное его количество, как это видно из табл. 266, переходило в кисло-родсодернощие соединепия. [c.520]

    Алюмосиликатным катализаторам в литературе уделяется много внимания. Эти катализаторы очень разнообразны по методам приготовления, обработки и активирующим добавкам. Так, например, применяют алюмогидросилнкаты или алюмосиликаты, содержащие 0,5—1% солей железа, никеля, кобальта, меди, хрома, марганца н обработанные сероводородом для придания стойкости к сере, имеющейся в крекинг-сырье. Катализаторы приготовляют в виде таблеток или пилюль для использования на установках с неподвижным контактом или при термофор-процессе для флюид-процесса их превращают в тонкую пыль (стр. 314). [c.311]

    Акриловая кислота Анилик а) Этиленциангидрин, острый пар, серная кислота б) Пропилен, воздух, катализатор (молибдат кобальта) Нитробензол, водород, катализатор (соли никеля, кобальта, меди) 1 Этиленциангидрин обрабатывают паром (175 °С) в присутствии серной кислоты Пропилен окисляют кислородом воздуха (парофазное окисление) при 400 С (давление нормальное) на катализаторе Нитробензол восстанавливают водородом в присутствии катализатора [c.221]

    Интересно отметить, что в чистом растворе Со 504 переход от анодного тока к катодному наступает при потенциалах, более отрицательных, чем из растворов, содержащих сульфат меди. Это вызвано тем, что присутствие меди в амальгаме сдвигает потенциал разряда ионов кобальта к положительным значениям вследствие образования химического соединения кобальт — медь. Полученные результаты ложатся на единую а1нодно-катодную поляризационную кривую (см. рис. 32, кривая 1—2). [c.64]

    Для растворения служат обычные ванны с кислотоупорной облицовкой, в которые завешивают недоработанные анодные остатки. В качестве катодов используют забракованные стальные матрицы. Ванну заполняют раствором H2SO4 (150—200 г/л). На аноде образуются ионы никеля, кобальта, меди, железа, на катоде выделяются осадок губчатой меди и водород. Выделяю- [c.361]

    В лаборатории института Гипроникель разработан способ электролитического получения никеля чистоты 99,9999% с применением нерастворимого анода. Из раствора N 012, приготовленного растворением карбонильно го никеля, удаляют примеси железа, кобальта, меди и других более электроположительных металлов с помощью электролитической очистки. Окончательную очистку от меди производят дитизоном, а доочистку от железа — купфероном. Экстрактором служат чистые ССЦ или С2Н5О. Электролиз ведут в растворе 150 г/л N1 в виде ЫЮЬ при температуре 70°, п ютности тока 1300 а/м . Катодом служит титан, анодом — чистейший графит. Полученный осадок нагревают в течение нескольких часов в вакууме при 1400°, при этом никель теряет водород, кислород, углерод, а также цинк, олово, кадмий, оставшиеся после электролитической очистки. [c.585]

    Появление мути свидетельствует о конце титрования. Эгу реакцию можно использовать для косвенного определения ряда металлов, образующих с цианид—ионом прочные комплексы (никель, кобальт, медь, цинк), Метоц малоприменим из-за токсичности цианида. [c.110]


Смотреть страницы где упоминается термин Кобальт от меди: [c.157]    [c.630]    [c.186]    [c.403]    [c.408]    [c.158]    [c.161]    [c.190]    [c.97]    [c.10]    [c.11]    [c.356]   
Методы химического анализа железных, титаномагнетитовых и хромовых руд (1966) -- [ c.137 , c.146 ]




ПОИСК







© 2025 chem21.info Реклама на сайте