Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Угли, сгорание

    Еще более важным источником органических продуктов является каменный уголь, хотя в век двигателей внутреннего сгорания мы обычно забываем о нем. Русский химик Владимир Николаевич Ипатьев (1867—1952) на рубеже веков начал исследовать сложные углеводороды, содержащиеся в нефти и каменноугольном дегте, и, в частности, изучать их реакции, идущие прн высоких температурах. Немецкий химик Фридрих Карл Рудольф Бергиус (1884—1949), используя данные Ипатьева, разработал в 1912 г. практические способы обработки каменного угля и нефти водородом с целью получения бензина. [c.136]


    Продукты сгорания топлива. Процессы горения играют главную роль в образовании загрязнений атмосферы. В качестве топлива наиболее широко применяют нефть, уголь, природный и попутный газы, в некоторых странах — древесину. Основные продукты сгорания топлива — диоксид и оксид углерода. В результате окисления примесей, содержащихся в топливе, образуются также оксиды серы и азота. [c.14]

    Выбросы от источников сгорания топлива приведены в табл. 3. Большинство установок, сжигающих уголь, оборудовано системами улавливания, поэтому выбросы составляют 1 — 10% от приведенных в табл. 3. [c.20]

    К факторам, существенно влияющим на процесс сгорания в дизеле, относятся свойства топлива, угол опережения впрыска топлива, качество распыления топлива и продолжительность его подачи, степень сжатия, частота вращения коленчатого вала. [c.158]

    Процессы, происходящие в бензиновом двигателе и дизеле, резко отличаются друг от друга, поэтому отличаются друг от друга и типы топлива, применяемого в этих двигателях. Для двигателей внутреннего сгорания (бензиновых) требуются низкокипящие, равномерно сгорающие углеводороды с относительно высокой температурой самовоспламенения [329, 330]. Топливо для дизельного двигателя, напротив, должно иметь низкую температуру воспламенения, и поэтому низкокипящие соединения для этой цели непригодны. К моменту воспламенения в дизельных двигателях находится не весь объем топлпва, как в бензиновых, а только часть топливо добавляется в течение всего времени поворота кривошипа, начиная с момента, когда кривошип не доходит на угол 15—20° до верхней мертвой точки, причем горение топлива происходит в полном объеме. [c.438]

    Уголь — это главным образом углерод (С). При сгорании углерода он соединяется с кислородом (О2) воздуха, в результате получается диоксид углерода (СО2), или углекислый газ. Записав формулы исходных веществ (С и [c.106]

    Теплота сгорания угля равна 394 кДж/моль (в качестве грубого приближения допустим, что уголь — это 100%-ный углерод). Напишите уравнение этой реакции с учетом выделившегося тепла. Что лучше использовать в качестве горючего уголь или октан (в расчете на грамм)  [c.208]

    Уголь и бензин содержат некоторое переменное количество серы, из которой при сгорании получается диоксид серы. Единственный успешный путь улучшения качества воздуха — это установить предельное содержание серы в сжигаемом топливе. [c.414]


    При соответствующем увеличении угла опережения зажигания с повышением числа оборотов можно достичь примерно постоянного расположения основной фазы сгорания. В связи с этим в современных двигателях устанавливается центробежный регулятор опережения зажигания, который изменяет угол в зависимости от скорости вращения коленчатого вала. Для регулирования угла опережения зажигания при изменении нагрузки на двигатель (степени открытия дроссельной заслонки) на современных двигателях устанавливается вакуумный регулятор. [c.65]

    Эти положения хорошо объясняют влияние на возникновение детонационного сгорания таких показателей, как степень сжатия двигателя, форма камеры сгорания, диаметр цилиндра, материал поршней и головки блока цилиндров, наличие отложений нагара, угол опережения зажигания, число оборотов коленчатого вала, температура и влажность окружающего воздуха, состав смеси, температура охлаждающей жидкости и т. д. [31—35]. [c.71]

    Топливо Весовое отношение воздуха к топливу Угол опережения зажигании 0, ПКВ Общая продолжительность сгорания, ПКВ [c.85]

    Диаметр жаровой трубы 190 мм, температура воздуха на входе в камеру сгорания 200 °С, давление в камере 0.298 МПа, расход воздуха 2 м с, корневой угол топливного факела фз-110  [c.146]

    Теплота сгорания веществ, состав которых непостоянен (нефть, каменный уголь, древесина и др.), может определяться по данным элементного состава, для чего можно использовать эм лирическую формулу Д. И. Менделеева. [c.122]

    Существует общее мнение, что уже в конце нашего столетия важное место в энергоснабжении займут синтетические виды топлива. Одним из них будет заменитель природного газа, которому и посвящается настоящая книга. К другим видам синтетического топлива относятся газы с более низкой теплотой сгорания, которые можно получать описанными в данной работе методами, и целый ря 1 жидких продуктов. Они будут дополнять, а в конечном счете и заменять природный газ и обычную сырую нефть как топливо и как сырье. Основным сырьевым материалом для получения синтетического топлива будет уголь, начиная от лигнитов и кончая каменными углями, поскольку его запасы огромны. Значительная роль отводится и таким ресурсам, как нефтеносные сланцы, битуминозные песчаники и тяжелая нефть. [c.5]

    Угли, содержащие 69% и более связанного углерода на горючую массу, должны классифицироваться по принципу содержания связанного углерода, независимо от теплоты сгорания. 5. Если уголь спекающийся, то его следует отнести к группе каменных углей с низким выходом летучих, 6. В группе каменного угля типа С с высоким выходом летучих различают три разновидности 1 — спекающиеся и невыветрившиеся, 2 — спекающиеся и выветрившиеся, 3 — неспекающиеся и невыветрившиеся.  [c.68]

    Во-вторых, почти все углеводороды, включая сырую топливную нефть и уголь, независимо от относительной молекулярной массы, могут взаимодействовать с кислородом и паром (или с воздухом и паром) при 1100—1400°С с образованием опять-таки смеси водорода, окиси углерода и некоторого количества двуокиси углерода, разумеется, разбавленных азотом, если в качестве окислителя применялся воздух [2]. По технологии газификации с частичным окислением теплота сгорания образующихся газов составляет около 2810 ккал/м (11 720 кДж/м ), если в качестве окислителя применяется кислород, и 1110 ккал/м (4650 кДж/м ) в случае воздушного дутья. [c.218]

    Вязкость и поверхностное натяжение топлива влияют па качество его расплава в камерах сгорания ВРД (размер капель, скорость истечения, угол распыления). От вязкости топлива зависят прокачиваемость его из топливных баков в камеру сгорания и работа топливорегулирующей аппаратуры. Поэтому вязкость топлив для ВРД строго нормируется как при положительных, так и при отрицательных температурах (см. табл. 2. 1 и рис. 2. 12). [c.117]

    Международная классификация углей [22], а также американская [23] относят теплоту сгорания на беззольный уголь, но содержащий свою обычную влажность. Для определения этого показателя французский стандарт [24] рекомендует помещать изучаемый образец угля при 30° С в атмосферу, содержащую 96—97% (отн.) влаги на время, достаточное (от 48 до 72 ч) для достижения равновесного состояния. Затем пробу угля высушивают в азоте при температуре 105—110° С и влажность относят к массе образца, уравновешенного в атмосфере 96—97% влажности. [c.46]

    Как и индекс выхода летучих веществ, теплота сгорания входит в метод международной классификации углей [22]. Эта величина основана фактически на расчете теплоты сгорания, отнесенной на беззольный уголь, но содержащей естественную шахтную влажность, т. е. равновесную в среде с 97% относительной влажности при,30" С. [c.48]

    Американская классификация 176] основана либо на показателе содержания углерода, отнесенном на сухой и беззольный уголь, для углей высокой степени метаморфизма (более 69% углерода), либо на теплоте сгорания, отнесенной на беззольный уголь, но содержащий Связанную воду (для углей низкой степени метаморфизма, теплота сгорания 7800 ккал/кг). [c.68]


    Целесообразны и другие анализы, например определение теплоты сгорания для того, чтобы установить место, занимаемое исследуемым углем в международной системе классификации, и элементарный анализ (позволяющий убедиться, что уголь не содержит избытка серы). Мы не говорим об этом потому, что эти характеристики не связаны непосредственно с коксуемостью. [c.241]

    Пламенные реакторы с предварительным смешением газов. Такие реакторы состоят из камеры смешения газов, диффузора, в котором заканчивается процесс смешения (диффузор обычно имеет угол открытия 23°), и камеры сгорания, в которую равномерно поступают газы из диффузора. [c.89]

    В работе также показано, что угол конусности факела распыленного топлива зависит от поверхностного натяжения. Чем меньше поверхностное натяжение, тем больше угол конусности факела и тем лучше условия для полного сгорания топлива. [c.62]

    Важное практическое и теоретическое значение имеют процессы превращения, которые претерпевают сернистые соединения при сжигании твердого топлива и при его нагревании без доступа воздуха. Было отмечено, что при сжигании углей окисляется вся органическая, а также элементарная и пиритная сера с образованием ЗОг и частично 0з, которые улетучиваются с дымовыми газами. Только небольшая часть этой серы, а также и содержащаяся в углях сульфатная сера остаются в шлаке в виде сульфатов. Сера, которую содержит уголь, приносит большие убытки народному хозяйству. При использовании угля в энергетических целях сера снижает его теплоту сгорания. Кроме того, превращение серы в 50г и 50з наносит значительный вред большим городам и уничтожает растительность в районах крупных промышленных центров, где расположены мощные тепловые электростанции. [c.110]

    В условиях однократного испарения (например, при впрыске топлива в камеру сгорания) оно может быть определено по методу С. Н. Обрядчикова. Для расчета нужно иметь данные фракционной разгонки топлива и знать угол наклона О кривой разгонки [c.30]

    Вязкость топлива в значительной степени зависит от температуры. При низких температурах вязкость резко повышается, что оказывает влияние на распыл его в камере сгорания (увеличивае-ется размер капель, уменьшается скорость истечения, уменьшается угол распыла). При этом ухудшается испарение топлива, полнота его сгорания, увеличивается удельный расход. С увеличением вязкости топлива возрастает сопротивление топливной системы, уменьшается наполнение насоса, в результате чего снижается его к. п. д. и может возникнуть кавитация. Поэтому вязкость топлив при низких температурах строго нормируется. Методы определения вязкости рассмотрены на стр. 34—37. [c.70]

    В течение ряда лет неоднократно изучалась и в отдельных случаях находила практическое воплощение идея использования продуктов предварительной газификации топлива в тепловых двигателях. Так, в 20—30-е годы широко использовали на автомобилях продукты газификации твердого топлива — древесные чурки, древесный и каменный уголь, торфяные и соломенные брикеты и др. Газификация осуществлялась в специальном газогенераторе, установленном на автомобиле (такие автомобили называли газогенераторными). Газогенераторная установка включала агрегаты очистки и охлаждения получаемого газа и приспособления для розжига топлива и обеспечения пуска двигателя. Основной топливный газ, получаемый при газификации, — оксид углерода. Кроме того, в продуктах газификации содержались водород, метан и другие горючие газы. Например, средний состав газа, получаемого из древесных чурок с абсолютной влажностью 20%, таков 20,9% (об.) СО, 16,1% (об.) На, 2,3% (об.) СН4, 0,2% -(об.) С Н , 9,2% (об.) СО2, 1,6% (об.) О2 и 49,7% (об.) N2. Теплота сгорания газа — около 5 МДж/м а горючей смеси с воздухом — 2,39 МДж/м . [c.182]

    Опыт создания дизелей, работающих на пылеугольном топливе, показал возможность использования для этой цели щирокого ассортимента твердого топлива, включая каменный уголь, торф, древесину, их смеси, органические отходы. Основным требованием к твердому топливу является приемлемая воспламеняемость, высокая температура и скорость сгорания, минимальные отложения в камере сгорания, связанные как с содержанием в топливе золы, так и с ее составом. [c.192]

    Уголь содержит серу, поэтому при его сгорании образуются коррози-оиио-активные газы SO2 и SO . [c.110]

    Первая одноцилиндровая установка с переменной степеньк сжатия была создана Г. Рикардо в начале 20-х годов, и на этой установке была разработана первая методика оценки детонационной стойкости топлив по так называемой критической или наивысшей полезной степени сжатия, при которой начинается слышимая детонация [1 ]. Таким образом, уже в первом методе оценки детонационной стойкости бензинов детонация вызывалась за счет увеличения степени сжатия. В дальнейшем для инициирования детонации применялись фактически все параметры режима работы двигателя (дросселирование, наддув, число оборотов, состав смеси, угол опережения зажигания, температурный режим и т. д.), однако до сего времени изменение степени сжатия является основным фактором для создания условий детонационного сгорания в лабораторных методах оценки антидетонационных свойств бензинов. [c.91]

    Интенсивное вращательное движение воздуха в сочетании с высоким давлением впрыска обеспечивают в неразделенной камере сгорания преимущественное объемное смесеобразование и большую скорость увеличения давления в фазе быстрого сгорания. Жидкое топливо впрыскивается непосредственно в движущуюся массу воздуха, не попадая на поверхность камеры сгорания, и может воспламеняться в нескольких зонах, где воздух нагрелся до наиболее высоких температур. Смесеобразование осуществляется главным образом за счет кинетической энергии, сообщенной топливу при впрыске под высоким давлением. В связи с этим, если по каким-либо причинам снижается давление впрыска и качество распыления топлива, то эти изменения сразу влияют на смесеобразование, полноту сгорания топлива и экономичность дизеля с неразделенной камерой сгорания. Такими причинами в условиях эксплуатации дизеля бывают понижение давления впрыска при износах плунжерных пар в топливном насосе высокого давления и смешение момента впрыска. Угол опережения впрыска равен углу поворота коленчатого вала от момента впрьюка топлива до прихода поршня в верхнюю мертвую точку. Оптимальное значение этого угла подобрано с учетом длительности периода задержки воспламенения, степени сжатия, способа смесеобразования и составляет в среднем от 18 до 25°. Угол опережения впрыска существенно влияет на топливную экономичность автомобиля с дизелем, поэтому за ним нужен систематический контроль. [c.159]

    По-видимому, наиболее перспективным для использования в технике является галогенирование углей трехфтористым хлором. В результате действия на уголь IF3 образуются высокогалогени-рованные масла, перегоняющиеся в широком интервале температур. Они прозрачны, но слегка окрашены, характеризуются высокой химической и термической стойкостью. Наилучшими свойствами обладают масла, в состав которых входит около 50% углерода и 19% фтора. Их можно применять в качестве взрывобезопасных жидкостей, жидкого теплоносителя при температурах выше 200 °С, смазки для клапанов двигателей внутреннего сгорания с большим к. п. д. и электротехнических масел [9, с. 158]. [c.143]

    Временная потеря активности может бьггь вызвана отложением мелкой угольной пыли и сажи вследствие неполного сгорания в камере. В этом случае уголь выжигается из катализатора при кратковременном повышении температуры до 350 °С, однако желательно достичь чистого пламени, если предусмотрены длительные периоды эксплуатации. [c.191]

    По классификации США А5ТМ, применяемой и в ряде других стран, угли в зависимости от стадии метаморфизма и состава подразделяют на четыре класса антрациты, битуминозные, суббитуминозные и лигниты. Основными классификационными параметрами при этом служат содержание углерода-на сухой обеззоленный уголь, выход летучих веществ и теплота сгорания угля с естественной пластовой влажностью [68]. [c.66]

    С этой целью выполнен экономический анализ условий, обеспечивающих равноэффективное производство моторных топлив из угля и нефти. Технико-экономические показатели производства синтетических жидких топлив из угля принимались по технологии ИГИ ири переработке угля Канско-Ачинского бассейна с теплотой сгорания 14,6 ГДж/т, Энергетический к. п. д. производства варьировался в диапазоне 50—60%. В качестве источника получения нефтяных моторных топлив принимался мазут с переработкой его в моторные топлива с использованием современной гидрокаталитической технологии нефтепереработки (схемы ее рассмотрены в главе 2). Энергетический к. п. д. производства моторных топлив из мазута принимался равным 88%. Оценка стоимости нефти, угля, моторных топлив и затрат на их получение осуществлялась по приведенным затратам. На рис. 5.2 показана зависимость затрат на уголь от затрат на нефть при условии равенства приведенных затрат на моторные топлива, получаемые из этих видов сырья. Как видно, минимальные приведенные затраты на нефть, при которых целесообразна организация производства синтетических жидких топлив из угля, составляют 176 руб/т. Чтобы обеспечить равноэффективные затраты на производство моторных топлив в размере 238 руб/т, приведенные затраты на добычу угля не должны превышать 3 руб/т (при к. п. д. = 55%)- [c.215]


Смотреть страницы где упоминается термин Угли, сгорание: [c.129]    [c.8]    [c.62]    [c.51]    [c.612]    [c.349]    [c.161]    [c.79]    [c.94]    [c.330]    [c.40]    [c.45]    [c.9]    [c.296]    [c.101]   
Общая органическая химия Т.1 (1981) -- [ c.96 ]




ПОИСК





Смотрите так же термины и статьи:

Определение теплоты сгорания угля

Опыт 41. Каталитическое сгорание органического вещества на активированном угле при низких температурах (моделирование процесса дыхания по Варбургу)

Свинец, абсорбция сероводорода при поверхностном сгорании угля

Тепловые свойства углей, теплоемкость сгорания углей

Теплота сгорания угля

Уголь сгорание в печах

Элементарный анализ и теплота сгорания углей



© 2025 chem21.info Реклама на сайте