Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Искровой источник

Таблица 8-2. Аналитические характеристики наиболее важных приборов, используемых для элементного анализа. Аналитические характеристики включают пределы обнаружения (ПО) в растворе (нг/мл) или твердой пробе (млн ), помехоустойчивость (робастность, отсутствие влияния основы), селективность (отсутствие спектральных помех) и воспроизводимость. Инструментальные характеристики включают желательную форму пробы, жидкую или твердую, минимальный расход пробы и максимальную солевую концентрацию в случае раствора. АЭС — атомно-эмиссионная спектрометрия, А АС— атомно-абсорбционная спектрометрия, МС —масс-спектрометрия, ИСП — индуктивно-связанная плазма, ЛТР — лампа с тлеющим разрядом, ГП — графитовая печь, ТИ — термоиониэация, ИИ — искровой источник, ЛИФС - лазерно-индуцированная флуоресцентная спектрометрия, РФСВД — рентгенофлуоресцентная спектрометрия с волновой дисперсией Таблица 8-2. <a href="/info/140729">Аналитические характеристики</a> <a href="/info/410326">наиболее важных</a> приборов, используемых для <a href="/info/5100">элементного анализа</a>. <a href="/info/140729">Аналитические характеристики</a> включают <a href="/info/5532">пределы обнаружения</a> (ПО) в растворе (нг/мл) или <a href="/info/5543">твердой пробе</a> (млн ), <a href="/info/1403099">помехоустойчивость</a> (робастность, <a href="/info/1418543">отсутствие влияния</a> основы), селективность (отсутствие <a href="/info/140811">спектральных помех</a>) и воспроизводимость. <a href="/info/142820">Инструментальные характеристики</a> включают желательную <a href="/info/583350">форму пробы</a>, жидкую или твердую, <a href="/info/146195">минимальный расход</a> пробы и максимальную <a href="/info/481813">солевую концентрацию</a> в случае раствора. АЭС — <a href="/info/141079">атомно-эмиссионная спектрометрия</a>, А АС— <a href="/info/140797">атомно-абсорбционная спектрометрия</a>, МС —<a href="/info/6125">масс-спектрометрия</a>, ИСП — <a href="/info/141592">индуктивно-связанная плазма</a>, ЛТР — лампа с тлеющим разрядом, ГП — <a href="/info/140765">графитовая печь</a>, ТИ — термоиониэация, ИИ — <a href="/info/141596">искровой источник</a>, ЛИФС - лазерно-индуцированная <a href="/info/85822">флуоресцентная спектрометрия</a>, РФСВД — <a href="/info/141885">рентгенофлуоресцентная спектрометрия</a> с волновой дисперсией

    Распыление растворов применяют и для их введения в дуговые и искровые источники света. [c.255]

    При анализе металлического титана и титановых сплавов чаще используются искровые источники света. В качестве постоянного электрода лучше применять магний или угольные электроды. [c.156]

    Искровая АЭС широко распространена для прямого анализа металлов и сплавов, таких, как сталь, нержавеющая сталь, никель и никелевые сплавы, алюминий и алюминиевые сплавы, медь и медные сплавы и т. д. В производстве стали этот метод является непревзойденным из-за скорости и воспроизводимости анализа. Искровой источник для АЭС может быть также выполнен в виде пистолета, соединенного с переносной системой для контроля и идентификации неизвестных образцов на месте с лабораторной точностью. Основ-1Юе ограничение искровой АЭС — необходимость построения градуировочного графика для каждого вида проб, связанная с влиянием основы пробы на интенсивность линий элементов. Например, для стали и алюминиевых сплавов необходимо иметь разные градуировки. [c.36]

    Искровой источник используют при пониженном давлении с фотографической пластинкой в качестве детектора. [c.137]

    Какой детектор обычно используют в масс-спектрометрии с искровым источником  [c.145]

    Ионизация в искровом источнике происходит при вакуумном разряде между двумя электродами, на один из которых нанесен образец. В наиболее распространенных радиочастотных источниках разность потенциалов между электродами составляет от 20 до 100 кВ. Метод предназначен в основном для анализа неорганических веществ. [c.37]

    При работе С искровым источником рыхлые толстые слои конденсата на электроде сбиваются первыми ударами искры и возбуждаются неполно, что приводит к снижению точности и чувствительности. Поэтому метод может применяться только к анализу сравнительно чистого урана. Наличие в пробе легколетучей примеси в количестве, большем одного процента, значительно ухудшает воспроизводимость, точность и чувствительность анализа. [c.363]

    Для анализа конденсата на электроде рекомендуется использовать искровой источник света — генератор ИГ-2, С=0,012 мкф, 1—6,15 мгн. Рекомендуемые аналитические линии (в А)  [c.366]

    Наибольшее применение находят масс-спектральные методы с искровым источником, особенно для анализа чистых веществ и природных объектов [373, 512, 907]. Предел обнаружения хрома в алюминии и других чистых веществах 5-10 % [373]. Разработан метод анализа с искровым источником для силикатных материалов и сплавов [930]. Метод пригоден для определения 60—70 элементов для их определения выбирают наиболее чувствительные и не [c.98]


    С целью повышения правильности и точности результатов определения примесей в металлах исследованы возможности электрической регистрации сигналов в сочетании с искровым источником ионов [724]. При определении Сг, Мн, V, Nb и Мо в образцах низколегированных сталей погрешность анализа составляет в среднем —2 %. Применение приспособлений к ионному источнику позволяет анализировать жидкости [98, 973] этот прием открывает возможность концентрирования определяемых примесей. Так, при определении хрома исследуемые образцы растворяют, затем экстрагируют r(VI) метилизобутилкетоном. [c.99]

    Анализ горных пород и минералов методом масс-спектрального анализа с применением искрового источника ионов описан в работах [513, 795, 907, 930], рентгенофлуоресцентным методом — в [633, 916, 1031, 1067]. [c.160]

    Масс-спектрометрия с искровым источником [c.134]

    Наиболее полными являются таблицы спектральных линий Гаррисона [1], содержащие данные о длинах волн и интенсивностях 110000 спектральных линий. Оценки интенсивностей в этих таблицах даны в основном для дугового и искрового источников возбуждения спектров. Для некоторых линий приведены также оценки их интенсивностей в тлеющем разряде. [c.354]

    Характерные для лазерных источников возбуждения спектров воспроизводимость, предел обнаружения, быстрота сопоставимы с аналогичными характеристиками для дуговых и искровых источников света. [c.375]

    Первые эксперименты по разделению изотопов методом двухфотонной диссоциации были проведены Р.В. Амбарцумяном, В.С. Летоховым и др. [15]. В опытах был применен импульсный лазер на СО2, возбуждающий колебательные состояния молекул №5Нз. Затем осуществлялась фотодиссоциация этих молекул ультрафиолетовым излучением искрового источника света, синхронизованного с излучением лазера. Участки спектра, которые могли бы вызвать диссоциацию молекул [c.179]

    Для снижения пределов обнаружения элементов применяют специальные добавки, приборы высокого разрешения, мелкозернистые и контрастные фотоэмульсии, в некоторых случаях предварительное концентрирование элементов или отделение матрицы с миоголинейчатым спектром. Весьма эффективно использование такого микрометода, как лазерный метод возбуждения с сочетанием вспомогательного искрового источника, позволяющего в 10- г вещества обнарул-сить 10 " г примеси. [c.99]

    Следует отметить, что наиболее чувствительная линия не всегда оказы1 ается последней, так как на результат могут оказывать влияние такие факторы, как источник возбуждения, спектральная область. Например, последние линии серы, кислорода, азота и других газов расположены в акуумной ультрафиолетовой области спектра, а рубидия и цезия — в инфракрасной области спектра, что требует применения специальной аппаратуры. Для снижения предела обнаружения иногда следует применять вместо искрового источника спектра дуговой или наоборот. [c.649]

    Иарли изучалась возможность определения азота в нефтяных коксах (сырых и прокаленных) с использованием эмиссионной спектроскопии. В литературе описаны методы определения азота в металлах и сплавах с применением различных режимов искрового источника возбуждения. Применение иск-РОЕОГО источника для получения атомного спектра азота при анализе нефтяных коксов не привело к положительным результатам. Исследование различных линий в видимой и инфракрасной области спектра при различных способах введения образца в разряд, создание контролируемой аргоновой атмосферы позволили получить нижний предел обнаружения азота около 0,3%, что совершенно недостаточно для прокаленных коксов. [c.134]

    Частоту искры обычно синхронизовали с частотой сети пит 1ния. В настоящее время синхронизацию осуществляют с помощью встроенного генератора. Частота промышленно производимых искровых источников находится в диапазоне 100-500 Гц. В большинстве систем используется технология генератора с постоянной фазой. Возможно также управлять формой искровой волны. В частности, длительность импульса можно увеличить вплоть до 700 мкс, чтобы получить разряд с характеристиками, близкими к дуговому, и тем самым улучшить пределы обнаружения и определение следов элементов. Однонаправленный разряд используют для защиты электрода и, следовательно, для увеличения его срока службы. В любом случае, высокоэнергетичную искру применяют в течение периода обыскривания для подготовки поверхности пробы и уменьшения мешающих влияний. Специальным приложением является использование вращающегося электрода (ротрода) для определения металлов износа (т. е. металлов, образующихся при износе двигателя) в маслах. Эта система преодолевает сложности, связанные с анализом жидкостей в искре. На вращающийся диск наносят тонкую пленку масла, а искра возникает в аналитическом промежутке между диском и другим высоковольтным электродом. [c.23]


    Хотя в качестве ионного источника можно использовать дугу (разд. 8.1), промышленно, выпускают только искровой источник [8.5-1]. Масс-спектрометры с искровым источником (ИИМС) появились в 1960-х гг. Используют искру высокого напряжения (разд. 8.1). Была использована искра постоянного тока, но в производимых приборах применяют импульсное поле с частотой 1 МГц, чтобы получить цуг коротких импульсов через межэлектродный промежуток. Поскольку длительность импульса (20-200 мкс) и частоту повторения (1Гц -10 кГц) можно изменять довольно широко, можно оптимизировать условия ионизации в соответствии с типом пробы. В противоположность искровым источникам для атомно-эмиссионной спектрометрии, которые работают обычно при атмосферном давлении, искровой источник для МС функционирует в условиях вакуума. Электроды расположены в искровом кожухе, который также соединен с высоким напряжением. Электрическое соединение не дает большинству ионов сталкиваться со стенками вакуумной системы, что могло бы привести к распьшению материала кожуха. [c.136]

    Искровой источник используют, в основном, с двойной фокусирующей системой Маттауха—Херцога высокого разрешения. Двойная фокусировка обеспечена одновременно для всех масс, поэтому весь спектр получается в плоскости, что дает возможность использовать в качестве детектора фотопластинку. Система Маттауха—Херцога имеет то преимущество, что способна работать с высоким энергетическим распределением ионов, образованных в искровом источнике. [c.137]

    Разряды низкого давления используют в качестве ионных источников в МС для проводящих твердых проб благодаря их простоте и эффективной ионизации. Их широко применяли до внедрения искрового источника. Вслед за использованием тлеющего разряда в атомно-эмиссионной спектрометрии, где наблюдали интенсивное испускание ионов, в начале 1970-х вновь возник интерес к применению этого источника в МС [8.5-9-8.5-13]. Масс-спектрометрия с тлеющим разрядом (ТРМС) имеет ряд уникальных характеристик, что можно видеть и в атомно-эмиссионной спектрометрии (разд. 8.1). Пробоподготовка сведена к минимуму, ТР работает при пониженном давлении (0,1-10 мм рт. ст.), атомизация происходит за счет распыления поверхности, а ионизация — главным образом за счет электронного удара и пеннинговской ионизации из метастабильных уровней инертного газа —сосредоточена в области свечения (рис. 8.5-2). Разрядный газ — это обычно аргон высокой чистоты, но аргон можно заменить другим инертным газом, например Ne. Интерфейс с МС располагают очень близко к области свечения, чтобы избежать захвата молекулярных ионов. Подобно ИСП-МС используют двухступенчатую дифференциальную систему откачки. Требуется также ионная оптика, особенно для уменьшения разброса энергии ионов. Настройка ионной оптики имеет решающее значение для экстракции и прохождения ионов. Параметры ТР, используемые для оптимизации ионизации, включают природу и давление газа, напряжение и ток разряда. В некоторых последних модификациях ячейку охлаждают жидким [c.137]

    Наиболее широко используемыми детекторами являются электронный умножитель (с непрерывными или дискретными динодами) и электрометр Фарадея. Фотопластинку используют только с искровым источником. Электронный умножитель с дискретными динодами состоит из ряда динодов. Ионы производят в электроны на первом диноде, затем электронный ток усиливается на других динодах благодаря приложенному на каждый динод напряжению. Умножитель с непрерывными динодами (или канальный умножитель) состоит из искривленной воронкообразной стеклянной трубки, покрытой изнутри полупроводником, например оксидом свинца. Для детектирования положительных ионов на вход трубки прикладьшают отрицательное высокое напряжение. Поскольку потенциал изменяется вдоль трубки, образующиеся вторичные электроны двигаются к концу умножителя, который имеет потенциал, близкий к нулевому. Канальный умножитель дает очень малый темновой ток, но имеет относительно малое время жизни, определяемое общим собранным зарядом. Хотя канальные умножители широко используют в ИСП-МС, существует современная тенденция к их замене на электронные умножители дискретного типа Используют как аналоговый режим, так и режим счета. Режим счета применяют в случае слабых сигналов, тогда как аналоговый режим используют для расширения верхней границы динамического диапазона детектора. Электрометр Фарадея (т. е. полый металлический проводник) - очень простое [c.141]

    ТИМС (термоионизационная масс-спектрометрия) является одним из лучших методов по точности (воспроизводимости). Это делает данный метод пригодным для измерения изотопного отношения, особенно при использовании электрометра Фарадея и секторного масс-спектрометра. Воспроизводимость может быть на уровне 0,1%, например для Са/ °Са, Mg/ Mg. В зависимости от приложения может быть необходима поправка на фракционирование изотопов, зависящее от массы. Метод ТИМС относительно нечувствителен к многоатомным помехам, особенно к тем, которые связаны с наличием Аг, таким, как в ИСП-МС (масс-спектрометрия с индуктивно-связанной плазмой) или ТРМС (масс-спектрометрия с тлеюцщм разрядом). Производительность составляет примерно 20 проб в день, что лучше, чем в ИИМС (масс-спектрометрия с искровым источником), но не так хорошо, как в ИСП-МС. [c.142]

    Методом ИИМС можно определять большое число элементов. Однако из-за относительно низкой воспроизводимости, связанной с нестабильностью процесса ионизации и возможной неоднородностью проб, искровой источник используют главным образом для качественного и полуколичественного обзорного анализа. Пределы обнаружения лежат в диапазоне 1-10 млрд для многих элементов, основным ограничением является использование фотопластинки. Даже с учетом этого, отличные пределы обнаружения в твердых пробах являются одной из важнейших характеристик искрового источника. Подобно любому методу неорганической масс-спектрометрии ИИМС может испытывать изобарные помехи из-за образования молекулярных частиц. Следует отметить, что производительность метода можно считать низкой. Это связано с использованием фотопластинок, что подразумевает ограниченный динамический диаг пазон и время на обработку и измерение. [c.143]

    Ионизация при лазерной десорбции в присутствии матрицы (MALDI) Ионизация при десорбции ИК-лазером Термическая ионизация Искровой источник [c.15]

    При анализе тория используют его двуокись (ТЬОг) — устойчивое, практически нелетучее соединение (т. пл. 3000° т. кип. при атмосферном давлении —4400° [460, 1786]. Испарение примесей В, Ма, К, Мп и других в вакууме производят при температуре нагрева пробы 1800—1900° в течение 1 мин. из навески 50 мг . Для испарения окислов бериллия или титана нужна температура 2000—2100°. Максимальная чувствительность спектрального определения большинства элементов достигается при сжигании конденсата в искровом источнике света при следующих параметрах колебательного контура самоиндукция = 0,15 мгн, емкость С = 0,012 мкф, межэлект-родное расстояние ii = 2 мм. Спектр фотографируют одновременно на два или три спектрографа — К-24 (или ИСП-22), КС-55 и ИСП-51 —с экспозицией 10 сек .  [c.221]

    Масс-спектрометрическим методом с использованием искрового источника можно обнаружить в антимониде галлия, фосфиде индия, антимониде индия до 3-10 ат.% Re, в арсениде галлия — до 2-10 ат.% Re [131]. [c.263]

    В качестве источников возбуждения спектров применяют дугу постоянного и переменного тока, низковольтный, высоковольтный, конденсированный и высокочастотный искровые разряды [222]. Описан способ возбуждения спектров анализируемых образцов в сильнотоковом (—60 а) стабилизированном стенками импульсном дуговом разряде в атмосфере аргона [1075]. В этих условиях предел обнаружения хрома (4 ч- 10)-10" г. Стандартное отклонение 15%. Используют лазерные источники возбуждения спектров 1 183, 283, 1108, 1118]. Так, рубиновый лазер в комбинации с искровым источником возбуждения спектра применяют для определения следов Сг, Со, Ре, Мп, Мо, 8п и в гомогенных синтетических порошках фторида бария, окислов алюминия, иттербия и вольфрама [1118]. В последние годы стали применять плазматроны [543]. Пределы обнаружения хрома при разных способах возбуждения в пробе, смешанной с угольным порошком (1 1), равны (в %)  [c.73]

    Более подходящим является использование лазерного излучения лишь для испарения твердых проб в соответствии со схемами, показанными на рис. 14.17. В первом варианте продукты лазерной эрозт отбираются на подставной электрод, и собранный конденсат анализируется в дуговом или искровом источнике. Во втором варианте продукты лазерного испарения непосредственно поступают в плазму искрового источника. [c.374]

    В — яркость линий (по Гаррисону) А — для дуги постоянного тока (сила тока 10 А) 5 ( ) — для искрового источника или различного рода газоразрядных трубок (в по-с.леднем случае числа заключены в скобки). [c.451]


Смотреть страницы где упоминается термин Искровой источник: [c.14]    [c.75]    [c.146]    [c.136]    [c.117]    [c.17]    [c.71]    [c.459]    [c.793]    [c.601]    [c.650]    [c.661]   
Смотреть главы в:

Физические методы анализа следов элементов -> Искровой источник




ПОИСК







© 2024 chem21.info Реклама на сайте