Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Прямой метод анализа металлов

    При определении столь низких концентраций редко удается проводить прямое колориметрическое определение или даже только реакцию образования окрашенного соединения непосредственно в растворе после обработки анализируемого материала кислотами. К числу немногих прямых методов, являющихся наиболее простыми по выполнению, относятся, апример, методы определения никеля в индии и сурьме, селена в мышьяке, фосфора в индии (см. настоящий сборник). В большинстве случаев при анализе высокочистых металлов, когда исходная навеска составляет не менее 0,5 г, присутствие в растворе основного элемента оказывает помехи проведению определения могут мешать и другие примесные элементы. Поэтому определению предшествует отделение искомого элемента тем или иным подходящим способом, зависящим как от химических свойств элемента-основы, так и примеси. Методы, принятые при анализе 1п, Оа, Аз и ЗЬ, наиболее часто используют для отделения специфические реакции элементов-примесей. Описаны и применяются три способа выделения определяемых элементов экстракция органическим растворителем соосаждение с коллектором отгонка в виде легколетучего соединения. [c.130]


    Для определения микроэлементов в коксе можно использовать метод анализа ископаемых углей. Навеску 6 г воздушносухого угля, измельченного до размера частиц 147 мкм, помещают в холодную муфельную печь, нагревают 1 ч до 300°С и 2 ч до 500 °С. При 500 °С выдерживают 2 ч, а затем охлаждают, взвешивают, зольный остаток растирают в агатовой ступке и вновь помещают в муфельную печь при 500 °С на 1 ч. Установлено, что при анализе углей (от бурого до антрацита) с использованием прямого озоления, даже если температура прокаливания не превышает 500 °С, наблюдаются значительные потери ряда элементов свинца и марганца — до 75%, бора и бериллия — 60%, ванадия — 25%, никеля и меди — 20% [140]. В работе [141] показано, что при прямом озолении с температурой прокаливания 550°С количество никеля, найденного в различных нефтепродуктах, составляет 70—81% по сравнению с его количеством при кислотном озолении, а ванадия — 56—88%. Потери металлов при прямом озолении существенно зависят от анализируемого продукта. Так, при прямом и кислотном озо- [c.80]

    ПРЯМОЙ МЕТОД АНАЛИЗА МЕТАЛЛОВ [c.54]

    Но косвенные методы значительно более трудоемки, чем прямые методы анализа. Кроме того, в процессе концентрирования примесей появляется опасность загрязнения пробы или потери определяемых примесей. Косвенные методы целесообразно использовать при анализе единичных или небольшого числа проб, при анализе проб, сильно различных по составу и свойствам, при невозможности приготовить эталоны из металл-органических соединений, недостаточной чувствительности прямых методов анализа и т. д. Во всех случаях, если состав проб неизвестен, целесообразно анализировать косвенными методами, лучше в сочетании с кислотным озолением. [c.24]

    Точные аналитические результаты могут быть получены прямыми методами анализа диэлектрических материалов, аналогичными методам анализа металлов и сплавов (разд. 2.2.6), но только в тех случаях, когда для построения и корректировки аналитических кривых используются стандартные образцы соответствующего типа, проверенные на однородность и постоянство размера частиц в нескольких лабораториях и проанализированные надежными химическими методами. [c.53]

    Весовой анализ — самый старый и наиболее логичный метод количественного анализа, в котором определения выполняются прямым взвешиванием. На первых этапах развития этого метода анализа металлы определяли, переводя их в элементное состояние. Позднее их начали осаждать в виде малорастворимых соединений, в которых количество металла находили экспериментальным путем. Стехиометрические соотношения стали использовать для расчетов значительно позднее. В первой половине прошлого века это был единственный метод количественного анализа. И Клапрот, и Берцелиус в своих аналитических работах пользовались только им. Лишь с 1860 г. в аналитическую практику стали входить методы объемного анализа, и описание этих методов появилось в учебниках. За время, прошедшее с середины прошлого века до наших дней, методика весового анализа почти не претерпела изменений. Приведем в качестве примера описанный во французском издании книги Розе (Париж, 1832) метод отделения железа от марганца  [c.120]


    При анализе этим методом на хорошо очищенную поверхность металла или сплава наносят несколько капель растворителя, затем (через 2—3 мин) полученный раствор отбирают капилляром и проводят качественные реакции в углублении фарфоровой пластинки или прямо на поверхности металла. [c.264]

    Искровая АЭС широко распространена для прямого анализа металлов и сплавов, таких, как сталь, нержавеющая сталь, никель и никелевые сплавы, алюминий и алюминиевые сплавы, медь и медные сплавы и т. д. В производстве стали этот метод является непревзойденным из-за скорости и воспроизводимости анализа. Искровой источник для АЭС может быть также выполнен в виде пистолета, соединенного с переносной системой для контроля и идентификации неизвестных образцов на месте с лабораторной точностью. Основ-1Юе ограничение искровой АЭС — необходимость построения градуировочного графика для каждого вида проб, связанная с влиянием основы пробы на интенсивность линий элементов. Например, для стали и алюминиевых сплавов необходимо иметь разные градуировки. [c.36]

    В последние годы все более широко для анализа металлов в природных объектах и почвах применяют прямые атомно-абсорбционные методы с лазерным атомизатором, комплекс ядерно-физических методов, в том числе ядерно-магнитно-релаксационный анализ, лазер-но-люминесцентные методы определения микроколичеств металлов, эмиссионный анализ с индуктивно связанной плазмой, ионообменную хроматографию. Наряду с инструментальными широко используются традиционные химические методы анализа. [c.250]

    Для проведения эмиссионного спектрального анализа прямыми методами требуется наличие эталонных проб масла. Эталоны получают путем добавления в чистое исходное масло исследуемых металлов в виде соединений, растворимых в масле (нафтенов, стеаратов, олеатов). Для повышения достоверности результатов анализа эталоны должны быть по возможности близкими к пробам по физическим свойствам и I химическому составу. [c.216]

    Специально очищенные образцы металлов и химических соединений обычно содержат примеси рзэ в количествах, близких предельно обнаружимым известными методами анализа, а часто и ниже их чувствительности. Поэтому анализ таких образцов лишь в редких случаях проводят прямым путем без предварительного концентрирования или, в лучшем случае, без специальных усовершенствований аппаратуры и методик, приводящих к значительному увеличению чувствительности благодаря повышению селективности, например, при дифференцированном испарении пробы в эмиссионном анализе. [c.243]

    С тремя молекулами аммиака прямо с ионом металла связан ион кислотного остатка. Рентгенографический анализ, вероятно, даст лучшие сведения об этой стороне вопроса. Поэтому следует рассмотреть несколько подробнее полученные этим методом данные о положении лигандов в твердых комплексных соединениях. [c.102]

    Чистый висмут, используемый в атомной энергетике, полупроводниковой технике и для приготовления специальных сплавов, лимитируется по ряду примесей. Содержание некоторых примесей в висмуте не должно превышать 10 — 10" % [1]. Прямые спектральные методы [2—4] обладают недостаточной чувствительностью и не позволяют определять некоторые примеси. Чувствительность оптических методов анализа с применением органических реактивов не превышает 10- % [5]. Использование электрохимических методов для анализа висмута на примеси затруднительно, так как висмут менее электроположителен, чем большинство металлов. Для анализа висмута может быть применен радиоактивационный метод [6], однако для него необходимо сложное оборудование и аппаратура и поэтому его нельзя осуществить во всех лабораториях. [c.213]

    Советский Союз обладает богатыми природными ресурсами благородных металлов, в частности металлов платиновой группы. Производство этих металлов расширяется. Важнейшей задачей является повышение степени извлечения этих элементов в процессе переработки руд, что невозможно без хорошо налаженного химико-аналитического контроля производства. В настоящее время для этой цели используют некоторые современные физические методы анализа — атомно-абсорбционные, радиоактивационные, рентгенофлуоресцентные. Однако наиболее сложные полные анализы материалов осуществляют в основном химическими методами, пробирно-спектральным способом, прямым эмиссионно-спектральным методом (в некоторых особых вариантах его). Для концентрирования платиновых металлов применяют осаждение тиокарбамидом. Основные трудности заключаются в отсутствии надежных методов анализа бедных платиновыми металлами производственных продуктов, а также руд, например хороших и разнообразных методов онределения очень малых количеств иридия. Применяющиеся методы полного анализа, как правило, длительны и трудоемки. Невелика точность ряда определений, особенно малых количеств платиновых металлов. Отсюда вытекают и задачи исследователей. Успехи и проблемы аналитической химии элементов платиновой группы, серебра и золота периодически обсуждаются на совещаниях по химии, технологии и анализу благородных металлов. Так, X совещание состоялось в Новосибирске в июле 1976 г. [c.137]


    Прибор ДСК-1 рассчитан как на применение относительного метода структурного анализа металлов, так и на возможность измерения абсолютных значений затухания и скорости распространения колебаний. Прибор укомплектован искателями различного типа с пьезоэлементами из кварца Х-среза прямыми (нормальными), прямыми раздельно-совмещенными, наклонными и наклонными раздельно-совмещенными. Искатели позволяют возбуждать в контролируемых изделиях продольные, поперечные, поверхностные волны и волны Лэмба в диапазоне частот от 0,65 до 10 МГц. Прибор одноблочный, питается от сети переменного тока, основные размеры 540x360x235 мм, масса около 23 кг. [c.71]

    Еще один метод определения металлов в каменном угле с прямым озолением пробы, переводом золы в раствор и атомно-абсорбционным анализом раствора описан в работе [319]. Навеску 10—30 г измельченной до размера частиц 0,2 мм воздушно-сухой пробы в платиновой или фарфоровой чашке нагревают 30 мин до 500 °С и прокаливают 1—1,5 ч при 800 °С. При определении летучих элементов (кадмия, цинка, свинца) выдерживают 6—8 ч при 450 °С. Чашку охлаждают и взвешивают. Затем золу растирают в агатовой ступке, просеивают через сито с размером отверстий 0,07 мм и повторно прокаливают 1 ч при 800 °С (для определения летучих элементов при 450 °С). После охлаждения золу переносят в склянку, закрывают и тщательно перемешивают. [c.225]

    Для анализа благородных металлов применяются прямой и комбинированный спектральные методы. Прямым методом, при-котором получают спектр самой пробы, пользуются при анализе достаточно богатых материалов, например аффинированных металлов [380—386], сплавов [370—387] и т. п. Исследуемые материалы либо вводятся в зону разряда путем испарения порошков в кратере электродов (графитового, угольного, металлического), либо сами служат электродами. Спектральный метод применяют для определения Ю —ю-з% благородных и неблагородных металлов в платине, палладии, родии [379—386, 409], иридии, рутении [395, 397, 409], золоте [398]. [c.204]

    Сущность метода. Прямое определение перечисленных металлов возможно, когда концентрация их превышает 100 мкг/л. Если приходится анализировать более разбавленные растворы, то во многих случаях достаточно упарить раствор после подкисления его азотной кислотой но при анализе очень разбавленных растворов или при необходимости повысить чувствительность определения рекомендуется предварительно выделять металлы экстракцией (см. разд. 2.3) < При анализе сточных вод часто требуется не концентрирование пробы, а ее разбавление. [c.22]

    Различные методы пробоотбора и подготовки проб для спектрального анализа металлов и сплавов даны на приведенной выше схеме. Названия исходных материалов набраны в разрядку. Отдельные операции пробоотбора и подготовки проб будут описаны в разделах, указанных на схеме. Примеси в высокочистых металлах и сплавах, которые пока невозможно определить прямыми эмиссионными методами, определяются после отделения их от основы и концентрирования физическим или химическим (с растворением) способом обогащения. Вещества, полученные в результате простых подготовительных операций, анализируются либо непосредственно с металлической поверхности, либо в виде смеси солей (твердых диэлектрических веществ), либо, наконец, в виде растворов (жидкостей). Последующие подготовительные операции со смесями солей (например, измельчение, разбавление, обогащение, приготовление стандартных образцов) будут обсуждены в разделе, посвященном подготовке твердых диэлектрических веществ (разд. 2.3), а подготовительные операции с растворами— в разделе подготовки жидких веществ (разд. 2.4.). Пунктирными линиями соединены на схеме те операции, которые редко следуют друг за другом. [c.14]

    Анализу подвергают золу работавшего масла [6—9], а процесс озо-ления пробы длителен и ненадежен. Прямой анализ работавшего масла (без предварительного озоления) осложняется тем, что содержание металлов в нем колеблется от обычных для эмиссионной спектроскопии количеств до очень малых. Поэтому при отсутствии предварительного концентрирования пробы (озоления) необходимо повысить чувствительность метода анализа. Кроме того, для прямого спектрального анализа горючих нефтепродуктов требуются специальные приемы по введению пробы в высокотемпературный источник возбуждения спектра. Для анализа отработавших масел, содержащих взвешенные частицы, многие из приемов прямого анализа непригодны Это относится, например, к методу пропитки и к методу пористой чашечки. Из методов, пригодных для таких анализов, следует отметить методы вращающегося диска и сжигания пробы из кратера угольного электрода, иногда с предварительным озолением [c.398]

    Метод был предложен К. Фельдманом [2] и широко применялся для анализа металлов, хотя он был также использован Р. О. Скоттом и А. М. Уре [21] и для анализа почв. Пористая чашечка изготавливается сверлением канала вниз по центру угольного или графитового стержня, как показано на рис. 29, а. Точный размер канала зависит от нужного количества пробы, и некоторые исследователи предпочитают заканчивать обточку низа сверлом под прямым углом (рис. 29, б), но первый тип пригоден для большинства целей и более технологичен. Нижний электрод представляет собой заостренный графитовый стержень, промежуток между электродами обычно составляет 2 мм. Дно чашечного электрода делается пористым нагреванием в пламени печи или дуги до белого каления. Раствор пробы вводится с помощью длинной [c.169]

    Химику-аналитику все чаще приходится анализировать особо чистые вещества, содержание примесей в которых не превышает 10" —10 %. Чувствительность прямых методов анализа, особенно таких распространенных, как спектральный или полярографический, при определении примесей в сверхчистых веществах оказывается, как правило, недостаточной. В связи с этим первостепенное значение для аналитической химии веществ высокой чи-гтоты имеет предварительное концентрирование примесей. Этот прием оказывается также необходимым при анализе металлов и сплавов, химических реактивов, природных вод, горных пород и т. д. [c.7]

    Экстракция разнолигандных комплексов — одно из наиболее интенсивно развивающихся направлений в аналитической химии, при этом разнолигандные комплексы используют для прямого определения не только ионов металлов-комплексообра-зователей, но и анионов-реагентов (лигандов). Разнообразие лигандов при образовании смешанных экстрагирующихся комплексов значительно расширяет возможности в повышении чувствительности и избирательности экстракционно-фотометрических методов анализа. [c.201]

    Сурьму в ниобии и пятиокиси ниобия наиболее часто определяют методами спектрального анализа. Ниобий предварительно переводят в пятиокись. Прямые методы [49, 9721 позволяют определять до 1-10- % ЗЬ. Предварительное отделение ЗЬ методом испарения снижает предел обнаружения ЗЬ до 1-10 % [379]. Метод, включающий концентрирование ЗЬ соосаждением с СиЗ [6431, и метод, в котором удаляют Nb экстракцией 60%-ным раствором ТБФ в бензоле в среде 10 М Н2304 [3781, также характеризуются высокой Чувствительностью п-10 % (5г=0,15-н 0,20). Метод инверсионной вольтамперометрии применен для определения ЗЬ > 5-10" % (5г <1 0,26) в ниобатах щелочных металлов и пятиокиси ниобия [290]. Предварительное выделение 8Ь экстракцией в виде диэтилдитиокарбамината позволяет снизить предел обнаружения ЗЬ до 1-10 % [223]. [c.142]

    Во многих работах ионообменные процессы были предложены в качестве способа решения химико-аналнтических задач. В самом общем виде в ге-терофаэной системе ионообменный сорбент — раствор можно осуществить абсолютное и относительное концентрирование определяемого компонента. Конечно, эти процессы в ходе аналитического определения являются вспомогательными, но во многих случаях они необходимы, иначе их применение было бы неоправданным иа фоне интенсивно развиваемых разнообразных прямых химических, физико-химических и физических методов современной аналитической химии. При недостаточном пределе обнаружения существующих или доступных в конкретной ситуации методов анализа прибегают к абсолютному концентрированию, например, путем упаривания, экстракции, осаждения. В ионообменном методе абсолютное концентрирование проводят поглошением определяемого элемента ионообменным сорбентом и регенерацией последнего малым объемом специально подобранного реагента (элюента). При недостаточной селективности существующих или доступных методов анализа прибегают к относительному концентрированию — отделению определяемого элемента от мешающих примесей. При ионообменном отделении мешающих элементов, далеких по ионообменным свойствам от определяемого компонента, относительное концентрирование выполняют простым пропусканием анализируемого раствора через слой (колонку) ионита в так называемых динамических проточных условиях (напрнмер, поглощение щелочноземельных металлов катионитом при титриметрическом определении сульфатов). Наконец, при отделении мешающих элементов, близких по свойствам к определяемому элементу (например, смесн щелочных, щелочноземельных, редкоземельных элементов, галогенов и пр.), относительное концентрирование осуществляют методом ионообменной хроматографии, т. е. методом разделения сме- [c.5]

    Класси зские методы изучения двойного слоя и частиц, образующихся или адсорбирующихся на поверхности электрода, включают а) измерение электрической емкости [21], б) электрокапилляр-ное определение поверхностного натяжения (у жидких металлов) с использованием гиббсовской термодинамической теории поверхности и адсорбции и в) определение поверхностного натяжения по периоду капания или по весу капель. Каждый из этих методов опирается на косвенную оценку адсорбционных свойств поверхности, получаемую из термодинамического анализа она является достаточно строгой и может быть экспериментально проверена на некорродирующих жидких металлах. Эти методы кратко обсуждены ниже они наилучшим образом подходят к жидким металлам. Емкостный метод может применяться также и в случае твердых металлов [20, 30], хотя здесь имеются ограничения, связанные с частотной зависимостью емкостной составляющей импеданса поверхности [31]. Поэтому для изучения твердых металлов желательны более прямые методы, и в частности методы, применимые in situ, не приводящие к нарушению равновесных или стационарных процессов, протекающих на поверхно- [c.398]

    Колориметрический метод с экстракцией диэтилдитиокарбамата меди хлороформом и прямой метод определения с тетраэтилгиурам-дисульфидом рекомендуются для анализа питьевых и поверхностных вод, а после минерализации пробы — и для анализа сточных вод, содержащих медь в концентрациях от 0,01 до 5 лгг в 1 л. Полярографический метод применяется для определения меди в концентрациях, превышающих 0,05 мг/л, и особенно рекомендуется для определения меди в присутствии других металлов. [c.269]

    Успешно применяют прямой эмиссионный метод анализа природных битумов. Навеску битума помещают в кратер электрода, содержащего 20 мг буфера (10% хлорида натрия в угольном порошке). Для определения ванадия, никеля и меди в электрод вводят 3 адг битума, а для определения молибдена и марганца — 20 мг. Эталоны готовят путем пропитки угольного порошка рассчитанным количеством растворов о-оксихинолина-та ванадия и меди и раствором диметилглиоксимата никеля в хлороформе. Для определения молибдена и марганца эталонами служат битумы, обогащенные этими металлами. Предварительно битум деметаллизируют экстракцией смесью серной кислоты и раствора роданида калия, затем в него вводят расчетные количества о-оксихинолинатов молибдена и марганца. Спектры возбуждают в дуге переменного тока силой 4—о А, экспозиция 120 с. Аналитические линии V 318,5 нм, N1 305,0 нм, Си 324,8 нм, Мо 313,2 нм, Мп 280,1 нм [285]. [c.186]

    Атомно-абсорбционный метод определения металлов в нефти и нефтяном коксе после озоления пробы и перевода золы в раствор описан в работе [142]. Применяют прямое и кислотное озоление. Навеску образца 10 г в кварцевой чашке нагревают на электроплитке до обугливания и сухой остаток прокаливают в муфельной печи 3 ч при 700 °С. После охлаждения золу растворяют в 0,5 мл концентрированной хлороводородной кислоты, раствор переносят в мерную колбу вместимостью 25 мл и объем доводят водой до метки. При кислотном озолении к 10 г пробы добавляют 10 мл концентрированной серной кислоты и далее действуют так же, как в первом методе. Эталоны готовят путем растворения хлоридов определяемых элементов в бидистиллированной воде. Анализ растворов выполняют на СФМ Джэррел Эш 82-350 . Алюминий и кальций определяют в пламени ацетилен — оксид диазота (расходы 6 и [c.224]

    Консистентные смазки и отложения можно анализировать прямыми и косвенными методами. Косвенные методы в принципе не отличаются от методов анализа масел. Необходимо лишь учитывать высокое и переменное содержание в большинстве смазок щелочных или щелочноземельных металлов. Это вынуждает особенно заботиться о подавлении влияния состава. В качестве буфера лучше использовать соли бария в количестве 20—50% от массы золы. Для устранения фракционирования пробу необходимо испарять из узких глубоких каналов током большой силы. Хорошие результаты получают при испарении пробы из канала диаметром 2 мм и глубиной 5—6 мм при силе тока дуги 10 а. Щелочные металлы и их окислы легколетучи. Поэтому для предотвращения потерь применяют [c.186]

    Поскольку чувствительность прямого спектрального метода недостаточна, при анализе бедных материалов применяют комбинированные методы, Сочетающие обогащение (пробирное,, химичеокое, ионообменное) со опектральным определением. Подробное критическое рассмотрение комбинированных методов-изложено в специальных работах [390, 399]. При пробирном обогащении (юм. гл. VI, стр. 251) получают сплав благородного металла с металлом —коллектором (свинец, серебро, медь, медь — никель, железо — никель), который подвергают спектральному анализу. Возможность и точность метода анализа определяются не только способом определения. металла, но также и полнотой его концентрирования. Так, в свинцовом сплаве можно определить лишь золото, платину и палладий [373—375], в серебряных корольках — золото, платину, палладий и родий [370, 392, 400], а в медно-серебряном сплаве также рутений и-иридий [392]. [c.204]

    Отсутствие какого-либо объекта анализа в перечне означает, что в литературе нет описания методов прямого спектрэльного анализа с относительными пределами обнаружения нередкоземельных элементов ниже 10 вес.%. При этом следует иметь в виду, что многие металлы высокой чистоты (А1, 11, Сг, Ре, Со, N1 и другие) анализируют в виде окислов, которые получают путем прокаливания порошка металла в окислительной атмосфере или растворением его в ос.ч. кислоте с последующей термической диссоциацией солей до окислов. [c.371]

    В литературе по бертоллидам преобладают сведения о соединениях тяжелых металлов, и хотя наиболее усовершенствованные рентгеновские методы позволяют сравнительно легко определить расположение атомов металла структуру соединений легких металлов часто очень трудно или даже невозможно установить прямыми методами. В простых случаях эту трудность можно преодолеть, но не путем реального решения задачи, а мысленно разместив атомы легких металлов наиболее вероятным способом в доступные для них полости. Однако, поскольку более сложные проблемы решаются только с помощью новейших методов структурного анализа, часто можно лишь догадываться о наиболее вероятном расположении анионов с малым атомным номером, занимающих обычно большую часть объема структуры. Поскольку металлы в разных валентных состояниях могут иметь различные координационные числа, легкие атомы занимают положения, играющие важнейшую роль для надежного описания структуры. Если бертоллид, содержащий металл с большим атомным номером, изучается в нескольких интервалах составов, более чем очевидно, что данные рентгеновского анализа, особенно полученные в порошковой камере, не позволят выявить аномалии в решетке неметалла. [c.106]

    Ультразвуковой дефектоскоп ДСК-1 (структурный анализатор) предназначен для обнаружения дефектов в полуфабрикатах и изделиях, определения величины зерна в хромонпкелевых сталях, графитовых включений в сером чугуне, межкристаллитной коррозии в коррозионностойких сталях и т. д. Он комплектуется набором прямых и раздельно-совмещенных преобразователей с углами падения 30, 32, 40, 50 и 65°. Дефектоскоп снабжен аттенюатором, с помощью которого входной сигнал ослабляется грубо (через 10 дБ в пределах О—60 дБ) и точно (через 1 дБ в пределах О—9 дБ). Особенностью прибора ДСК-1 является возможность работы с одним преобразователем на разных частотах. Так, нанример, преобразователь на 10 МГц может работать на всех остальных частотах. Это очень важно при структурном анализе металлов относительным методом. [c.159]

    Явление фракционного испарения примесей играет важную роль при анализе металлов и окислов с помощью так называемой глобульной дуги. Под глобульной дугой понимается дуговой разряд, горящий между расплавленной каплей металла или его окисла (обладающего металлической проводимостью) и противо-электродом. Благодаря возрастанию скорости диффузии компонентов в расплавленном образце, 01у1слению металлов и всплыванию ( вышлаковыванию ) окислов, а также вследствие фракционной дистилляции летучих примесей глобульная дуга позволяет снизить пределы обнаружения ряда примесей по сравнению с обычными методами прямого спектрального анализа с использованием дугового или искрового разряда между металлическими электродами [c.144]

    Никель в титане и его двуокиси определяют спектральным методом. Прямой метод имеет чувствительность 10 % при анализе двуокиси титана [119], 3-10 — при анализе металла после переведения его в двуокись и с добавкой Ag l [135]. Концентрируя следы элементов (титан удаляют хлорированием), повышают чувствительность до 2-10 % [135]. [c.163]

    Предлагаемый метод анализа [1] основан на окислении навески вещества смесью концентрированной серной и хромовой кислот в атмосфере кислорода при 150° С в приборе, показанном на рисунке. Возможные продукты неполного сгорания дожигают в трубке над окисью хрома, нанесенной на пемзу. Углерод определяют в виде двуокиси углерода весовым путем. Хлор пли бром улавливают раствором гидразингидрата, нейтрализованного уксусной кислотой до pH 6, и определяют аргентометрически. Разумеется, прямое определение водорода исключается, что в ряде случаев не является решающим, по зато одновременно с углеродом и галогенами из одной навески можно определять многие элементы, остающиеся в реакционной смеси, например, азот, бор, фосфор, кремний, металлы и др. [c.3]

    Прямые реакции с иодом. Стандартный раствор иода, который является слабым окислителем, можно применять для титрования сильных восстановителей. Широкие возможности его применения можно проиллюстрировать кратким перечислением некоторых примеров титрование As в гидрокарбонатном растворе в присутствии крахмала в качестве индикатора определение олова после восстановления его до Sn свинцом, сурьмой, алюминием, никелем или железом определение таллия (III) после восстановления его до таллия (I) определение сульфидов либо прямым титрованием раствором иода, либо косвенным способом, основанным на добавлении избытка иода и последующем обратном титровании определение тиоацетамида титрованием иодом как основа микроопределения ионов тяжелых металлов определение сульфитов обратным титрованием раздельное определение гипофосфита и фосфита в одной пробе титрованием при двух различных значениях pH определение цианидов по количественной реакции с иодом в щелочной среде определение титрованием иодом ряда органических соединений [78], например, полифенолов, аскорбиновой кислоты, меркаптанов, мочевой кислоты, гидразинов, фенолов, дитиогликолевой кислоты, металлорганических меркаптидов, алкильных соединений алюминия и др. Йодные числа применяют в качестве меры нена-сыщенности жиров и масел. Подробное описание многих методов анализа с использованием иода можно найти в руководстве Кольтгофа и Белчера [1]. [c.399]


Смотреть страницы где упоминается термин Прямой метод анализа металлов: [c.285]    [c.18]    [c.821]    [c.43]    [c.21]    [c.144]    [c.319]    [c.319]    [c.182]   
Смотреть главы в:

Атомно-флуоресцентный анализ -> Прямой метод анализа металлов




ПОИСК







© 2025 chem21.info Реклама на сайте