Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

АРОМАТИЧЕСКИЕ СОЕДИНЕНИЯ i Бензол и его производные

    Описание гидрирования ароматических соединений с функциональными группами в качестве заместителей выходит за рамки настоящей книги, однако сказать о них несколько слов полезно для большей полноты картины. Гидрирование функциональных производных бензола протекает сложнее, чем в ряду углеводородов. Показано [111 —112], в частности, что реакционная способность ароматических соединений в процессе каталитического гидрирования существенно зависит от природы заместителя. [c.57]


    Все вышеописанные ароматические соединения были производными бензола, но это не означает, что бензол является единственным представителем огромного числа органических веществ, обладающих определенными характерными химическими и физическими свойствами. Общая отличительная особенность этих соединений заключается в том, что все они содержат плоскую циклическую сопряженную систему л-связей, состоящую из (4/г + 2) электронов. В данном разделе представлены различные группы этих соединений без детального описания их химических свойств. [c.304]

    Исследовано действие ацетилнитрата на некоторые ароматические соединения. Бензол, толуол, бензилхлорид, бензойная кислота, фенол, анизол, ацетанилид, нафталин, хинолин дают при нитровании соответствующие мононитросоединения с теоретическими или почти теоретическими выходами. При действии ацетилнитрата на производные бензола получаются, [c.423]

    Развитие промышленности и транспорта за последнее столетие резко увеличило содержание ароматических соединений (бензола и его гомологов и производных, фенолов), а также полициклических ароматических углеводородов (ПАУ) (нафталин, антрацен, пирен и др.) в верхних горизонтах почв. [c.54]

    Проведение опытов в автоклаве с турбинной мешалкой позволило быстро получить сведения о разнообразных ароматических соединениях, пригодных в качестве добавок [39]. Применялась только одна концентрация каждой ароматической добавки, в пределах 1,2—2,8% от веса м-пентана. Из моноциклических ароматических углеводородов особенно эффективными оказались бензол, толуол, изопропилбензол, втор-бутил-бензол, 1,4-диметилбензол и особенно /и/)ете-бутилбензол. Некоторые полициклические ароматические углеводороды, а именно бифенил, дифенилметан, нафталин и 2-метилнафталин, обладали положительным, ио несколько менее избирательным действием. В числе производных ароматических углеводородов, содержащих кислород, азот или хлор, эффективными были дифениловый эфир и хлорбензол. [c.24]

    Ароматические соединения Бензол и его производные Многоядерные ароматические соединения Гетероциклические соединения [c.8]

    Поскольку для восстановления полициклических ароматических систем наличие спирта в реакционной среде необязательно, в данный обзор включены лишь производные простейших ароматических соединений — бензола и нафталина. [c.9]

    Я согласен с предложениями выступавших здесь товарищей, говоривших о том, какие острые вопросы химии было бы целесообразно рассмотреть в первую очередь это сопряженные связи, строение ароматических соединений, бензола и его производных, ориентирующие заместители. В области, в которой я работаю (альфа-гетероциклические соединения — окись этилена), есть много экспериментальных фактов, которые было бы целесообразно рассмотреть в теоретическом аспекте. Я не имею возможности подробнее на этом останавливаться укажу только, что особенно интересным представляется сравнение свойств и строения циклопропана и окиси этилена. При таком рассмотрении можно было бы показать на конкретных примерах, что химическое поведение этих соединений целиком определяется особенностями атомов, которые их образуют в частности, гетеро-атом — кислород — в окиси этилена изменяет характер связей в молекуле ее, хотя эти связи изображаются соверщенно одинаково, и не только изображаются, но и понимаются, как и связи в циклопропане. [c.200]


    Индивидуальные ароматические соединения — бензол, толуол, ксилолы, нафталин, антрацен, фенолы, крезолы и др., получаемые главным образом путем переработки каменноугольной смолы (стр. 56), служат сырьем для получения соединений более сложного строения, так называемых промежуточных продуктов, или полупродуктов. Из полупродуктов получают еще более сложно построенные соединения— красители, душистые лекарственные вещества и т. д. Наиболее широко используются в качестве промежуточных продуктов ароматические сульфокислоты, нитропроизводные, галоидопроизводные, амины и их К-алкилированные производные, фенолы и различные продукты окисления ароматических соединений. [c.215]

    Реакция Фриделя—Крафтса была открыта в 1877 г. при ее подробном изучении было установлено, что эта реакция возможна для самых различных ароматических соединений бензола и его гомологов и производных, а также для нафталина и его производных, ряда гетероциклов и т. д. [c.175]

    ХИМИИ и аналитической химии им. В. И. Вернадского АН СССР проведен ряд работ по исследованию люминесцентных свойств (в ус.ловиях эффекта Шпольского) простых ароматических соединений (бензол, его гомологи и производные) с целью получения и использования квазилинейчатых спектров люминесценции в аналитической практике, в частности при анализе природных и сточных вод. [c.193]

    Давно было установлено, что при некоторых процессах переработки нефти образуются ненасыщенные соединения. Это происходит, например, при процессе риформинга, с помощью которого получают высокооктановые бензины. В термическом варианте этого процесса бензин при повышенном давлении подвергают кратковременному воздействию высоких температур. При этом образуются ароматические соединения бензол и его производные — толуол, ксилол и т. д. [c.76]

    Ароматические соединения обладают рядом характерных химических свойств. Это ненасыщенные соединения, но в отличие от алкенов и алкинов они не способны к реакциям присоединения и окисления. В настоящей главе рассмотрены типичные ароматические соединения — бензол и некоторые его производные. [c.222]

    Метод локализованных пар (простейшее приближение метода ВС) неудобен для описания огромного числа молекул, содержащих цепочки так называемых сопряженных связей —С=С—С=С—С=, и молекул ароматических соединений, в том числе бензола и его производных. Эти соединения не могут быть описаны единственной структурной формулой. Уже молекуле бензола можно приписать по меньшей мере две структурные формулы Кекуле  [c.58]

    Подтверждением этих выводов являются исследования взаимодействия АШгз с метилбензолами методом комбинационного рассеивания света, которые показали, что в бензоле, толуоле, /г-ксилоле в широком интервале температур изменений в спектрах не наблюдается. У других производных бензола при низких температурах снижается интенсивность линии 210 см и усиливается новая линия — 197 см , причем природа ароматического соединения определяет лишь температурный интервал изменения спектра. Слабая электрическая проводимость указывает на отсутствие ионных форм. На основании этих и ряда других данных сделан вывод о существовании л-комплексов следующих структур [(а)—симметричный неионизованный (б)—более прочный поляризованный комплексы]  [c.80]

    Робинсон с сотрудниками изучил нитрование надазотистой кислотой ряда ароматических соединений бензола, толуола, хлорбензола, нитробензола, феиола, диметиланилина, фене-тола, фениллропилового эфира и ацетофенона. Выход нитро-и гидроксилированных производных невелик (порядка 10%). [c.198]

    Химия ароматических соединений — это прежде всего химия бензола и его производных, а также производных нафталина, антрацена и других ароматических соединений с конденсированными кольцами. В настоящее время известны углеводородные системы, обладающие ароматичностью, но не имеющие шестичленных циклов [1, с. 24—26 2, с. 487—518] в данной работе они не рассматриваются. [c.7]

    Принимая, одпако, во внимание, что ароматические углеводороды, образующие при окислении большое количество фенолов (полициклические ароматические углеводороды с короткими алкильными цепями), склонны также к образованию больших количеств смолистых веществ и продуктов их конденсации, с практической точки зрения более целесообразно иметь масло, содержащее преимущественно малоциклические ароматические углеводороды (производных бензола, нафталина, дифенила) с длинными алкильными цепями, хотя для торможения окисления нафтенов требуется большой процент ароматических углеводородов этого типа. Малоциклические ароматические углеводороды с длинными алкильными цепями при окислении образуют относительно немного смолистых веществ, и, кроме того, этот тип ароматических соединений, как указано ниже, является благоприятным для других свойств смазочных масел (пологость кривой вязкости, малое коксовое число и т. д.). [c.281]


    ДИ- и ТРИВИНИЛЬНЫЕ ПРОИЗВОДНЫЕ АРОМАТИЧЕСКИХ СОЕДИНЕНИЙ А. Производные бензола [c.201]

    При дальнейшем изучении нитрования различных ароматических соединений азотной кислотой в органических растворителях Ингольд с сотрудниками 171, 721 показали, что нитрование фенолов, ароматических аминов и их лкилированных производных отличается от нитрования других ароматических соединений. Это отличие проявляется в различном влиянии азотистой кислоты на скорость нитрования. Как мы видели, нитрование в органических растворителях, достаточно ре -акционноспособных к электрофильньш замещениям ароматических соединений (бензола, толуола и др.)> протекает по кинетике нулевого порядка, причем добавление азотистой кислоты несколько снижает скорость реакции. Выражение для скорости в этом случав имеет следующий вид  [c.193]

    Кольцевой ток. Движение я-электронов по замкнутому контуру. Кольцевой ток генерирует магнитное поле, которое может влиять па резоианспую частоту электронов. Обычно кольцевой ток сдвигает сигналы протонов ароматических соединений (например, производных бензола) в область слабого ноля (на спектре влево) от того места, где они должны были бы находиться ири отсутствии кольцевого тока (рис. 15-5 и 15-5). Наличие кольцевого тока — признак ароматичности соединения. [c.586]

    Ароматические соединения поступают в биосферу различными путями и их источниками служат промышленные предприятия, транспорт, бытовые стоки. Особое внимание, уделяемое ароматическим соединениям, в значительной степени вызвано их канцерогенными, свойствами. Собственно ароматические соединения (бензол, его гомологи и производные, фенолы), а также полициклические ароматические углеводороды (ПАУ) поступают в атмосферу в результате выбросов и отходов коксохимических заводов, некоторых химических заводов, выхлопов двигателей внутреннего сгорания, продуктов сжигания различных видов топлива. В стоках коксохимических заводов содержится и большое количество фенольных соединений. Грунтовые воды нередко зафязняются ПАУ за счет различных осадков сточных вод. Фенольными соединениями вообще представлена большая фуппа ксенобиотиков анфопогенного происхождения. [c.102]

    В 1877 г. Ш. Фридель и Д. Крафте показали, что бензол и его гомологи в присутствии безводного хлористого алюминия способны к алкилированию под действием галогеналкилов, при этом происходит отщепление хлористого водорода и замещение атома водорода ароматического ядра на соответствующий радикал. Позднее было установлено, что указанная реакция возможна для самых различных ароматических соединений — бензола, его гомологов и производных, нафталина и его производных, ряда,гетероциклических соединений и т. д. [c.170]

    На основе вышеизложенных исследований были предложены методы определеншь простых ароматических соединений (бензола й его гомологов и производных) по их квазилинейчатым спектрам фосфоресценции. Предел обнаружения по 35-критерию бензола и его гомологов в метилциклогексане по квазилинейчатым спектрам фосфоресценци при температуре жидкого азота составляет 1-10 — п-10 %. Относительное стандартное отклонение отдельного определения (Зг) находится в пределах 0,1—0,2. Если учесть, что бензол и его гомологи могут экстрагироваться циклогексаном (метилциклогексаном) из различных сред, в том числе водных, то в пересчете на исходный раствор предел обнаружения понижается. [c.249]

    При —78,51° растворимость хлористого водорода в разбавленных растворах (5%) ароматических производных в н-гептане меняется в широких пределах [43]. Например, хлористый водород на 40% более растворим в к-гептане, содержащем 5% мезитилена, чем в аналогичном растворе, содержащем 5% бензола. Константы закона Генри, = /сТУнс ) составляют соответственно 2550 и 3500 мм для обоих растворов. Изменение упругости хлористого водорода над растворами указывает на существование равновесия, включающего образование в растворе комплекса между хлористым водородом и ароматическими соединениями в отношении 1 1  [c.399]

    Нитрование ароматических соединений азотной кислотой каталитически ускоряется ионом Н504, доставляемым серной кислотой. Силикагель катализирует процесс нитрования бензола N0 в паровой фазе. Низшие окислы азота являются катализаторами процесса нитрования производных бензола четырехокисью азота. Для проведения процесса нитрования парафинов катализатора не требуется. [c.330]

    При высокотемпературном крекинге из низших парафинов образуются ароматические производные. На роль циклических соединений, таких как ароматика и фульвены, в образовании угля указали Торп, Лонг и Гарнер (Thorp, Long, and Garner [75, 76]). Они нашли бифенил в пламени горящего бензола и предположили, что это соединение и связанные с ним конденсированные ароматические соединения являются промежуточными продуктами при образовании угля. Позже в коксовых остатках различных топлив они обнаружили фульвены, что предполагает существование диеновых промежуточных веществ. В токе водорода образование сажи приостанавливается при прекращении дегидрирования, которое предшествует циклизации. [c.476]

    Бензол С Н — это простейший представитель очень важного класса кирпичиков — циклических исходных молекул для синтеза более сложных структур. Они известны под названием ароматических соединений. Эти соединения образуют отдельный класс, потому что по химическим свойствам они резко отличаются от циклоалканов и их производных. Свое название они получили из-за приятного запаха тех соединений, которые были открыты первыми. [c.216]

    Соединения, содержащие серу, явно участвуют в коксообразо-, ванип. При спектральном изучении состава коксовых отложений, экстрагированных растворителями после гидрокрекинга (давление 30 кгс/см ) нефтей и тяжелых фракций, установлено, что в них содержатся парафиновые и циклопарафиновые углеводороды, производные бензола, гомологи дифенила, би- и трициклические ароматические углеводороды и ароматические соединения, содержащие серу В экстрактах обнаружены также соединения молибдена и кобальта, образовавшиеся, очевидно, из активных компонентов катализатора, но не найдены продукты уплотнения. Они, вероятно, образуются на последних стадиях процесса, так как с переходом к сухому коксу увеличивается число ароматических колец, резко возрастает отношение С Н. [c.318]

    Моноциклические ароматические соединения—производные бензола — рассматривают как продукты замещения атомов водорода в молекуле бензола. При этом нумерацию в кольце начинают с атома углерода, связанного с наименьшим углеводородным радикалом (для углеводородов, имеющих заместители). В литературе укоренились и традиционные наименования алкиларома-. тичеоких углеводородов (алкиларенов), которые зачастую используют значительно шире, чем рациональные. Ниже приведены формулы производных бензолов и наиболее употребляемые названия  [c.7]

    Арены содержатся в нефтях от 10 до 20 %, редко достигая 35 % и более. Наиболее богаты аренами молодые кайнозойские нефти. Этот класс углеводородов представлен в нефтях гомологами бензола, производными би- и полицикличес сих соединений. В нефтях идентифицированы гомологи нафталина, дифенила. В высококипящих фракциях нефтей обнаружены также полициклические арены производные фенантрена, антрацена, хризе-на и пирена /4/. В тяжелых нефтях обнаружены полициклические арены, имеющие в молекуле до 7 ароматических колец, хотя содержание полицик-лических аренов в нефтях незначительно. Среднее содержание отдельных групп в общем количестве ароматических углеводородов для нефтей нашей страны (% масс) бензольные-67, нафталиновые-18, фенантреновые-8, хри-зеновые и бензфлуореновые-3, пиреновые-2, антраценовые- 1, прочие арены-1 /3/. [c.12]


Смотреть страницы где упоминается термин АРОМАТИЧЕСКИЕ СОЕДИНЕНИЯ i Бензол и его производные: [c.254]    [c.398]    [c.178]    [c.222]    [c.144]    [c.33]    [c.231]    [c.269]    [c.365]    [c.622]   
Смотреть главы в:

Начала органической химии Кн 2 Издание 2 -> АРОМАТИЧЕСКИЕ СОЕДИНЕНИЯ i Бензол и его производные




ПОИСК





Смотрите так же термины и статьи:

ССВ в бензоле производных бензола

ароматических соединений бензола



© 2025 chem21.info Реклама на сайте