Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электроны частота резонансная

    Метод ЭПР основан на эффекте Зеемана и открыт в 1944 г. Е. К. Завойским. В этом методе рассматривается расщепление энергетических уровней, возникающих в результате воздействия магнитного поля на вещество, содержащее атомы с неспаренными электронами (точнее — электроны с нескомпенсированным магнитным моментом). Если такое вещество поместить в магнитное поле и подвергнуть воздействию переменного электромагнитного поля перпендикулярно статическому, то при определенных частотах происходит резонансное поглощение энергии образцом. Энергия взаимодействия неспаренных электронов с полем равна [c.60]


    Практически эти зависимости гораздо сложнее вследствие влияния многих факторов. Поэтому разработчики влагомеров реализуют функции преобразования, полученные экспериментальным путем. Поточный влагомер состоит из измерительного преобразователя (ИП) и электронного преобразователя (блока). ИП - емкостный преобразователь, в котором между двумя электродами протекает нефть (эмульсия), и емкость его зависит от содержания воды. Обычно используют коаксиальные емкостные преобразователи, в которых потенциальный электрод выполнен в виде стержня, а нулевым электродом служит трубопровод (корпус). Стержень покрывается изоляционным материалом (например, фторопластом), который одновременно предотвращает отложения парафина и других осадков. ДП измеряют нулевыми (на частотах до 50 МГц) или резонансными (на частотах до сотен МГц) методами. Нулевые методы реализуют с помощью мостовых схем. Среди резонансных методов различают  [c.59]

    С помощью сенсора можно также получить сигнал, позволяющий измерять плотность жидкости. Вибрирующая трубка сенсора аналогична трубке вибрационного плотномера. Трубка сенсора колеблется с собственной резонансной частотой, которая зависит от размеров и массы трубки с жидкостью. Поскольку размеры и масса трубки постоянны, резонансная частота колебаний трубки пропорциональна плотности жидкости. Управление сенсором, преобразование сигналов и выдача их осуществляется электронными преобразователями различных типов. [c.54]

    Ядерный магнитный резонанс (ЯМР). Много общего с ЭПР имеет явление резонансного поглощения электромагнитной энергии, обусловленное переориентацией магнитных моментов ядер, — ядерный магнитный резонанс. Явление это наблюдается на ядрах далеко не всех атомов. Ядра с четными числами протонов и нейтронов имеют спин / = О и, следовательно, не магнитны. Обычно ЯМР исследуют на ядрах Н , Р и спин которых / = /г. Магнитное квантовое число спина гП] в этом случае принимает два значения пц = Ч- /а и пц = —1/а. Этому отвечают в статическом магнитном поле две ориентации магнитного момента ядра— в направлении поля (т/ = = 1/2) и в противоположном (т/ — — /2), различающиеся по энергии на величину АЕ. При наложении слабого радиочастотного поля, перпендикулярного статическому, происходит резонансное поглощение, приводящее к переориентации спинов при частоте, определяемой условием резонанса V = АЕ/к. Обычно в поле порядка 10 ООО Э ([10 /4я]А/м) ЯМР наблюдается на частоте ч =42,57 мГц. Частота резонанса для ЯМР во столько же раз меньше частоты ЭПР (при одном и том же Н), во сколько раз масса ядра больше массы электрона. (Соответственно ядерный магнитный момент меньше электронного магнитного момента.) [c.149]


    Как и во всяком спектроскопическом методе, определяются частоты резонансного поглощения, ширина и тонкая структура линий. Из формулы (XXV.6) следует, что для свободного электрона <7=2, Значение величины д да- [c.671]

    При любом движении электрического заряда возникает магнитное-поле. Не представляет исключения и спин электрона — электрон создает магнитное поле, соответствующее магнитному моменту, который должен быть у вращающегося отрицательного заряда электричества. Вращающийся электрон можно представить себе как крошечный магнит, который может ориентироваться в магнитном поле таким образом, что составляющая момента количества движения, имеющая направление вдоль поля, равна -Ьцв или —цв, где цв —магнетон Бора = 0,927- 10- Дж-Т- (джоуль тесла- = 10 эрг - гаусс" ). Спин электрона в магнитном поле может измениться и приобрести отрицательную ориентацию вместо положительной, если электрон поглотит микроволновое излучение, имеющее соответствующую частоту. На этом основан метод электронно-спиновой резонансной спектроскопии (электронного парамагнитного резонанса, ЭПР) после 1945 г. этим методом получена огромная информация об электронных структурах. [c.111]

    Электронная конфигурация атома азота в основном состоянии У азота существует три терма 6, и Р, Состояние является основным состояния Ю ъ Р — метастабиль-ными [49]. СТ-взаимодействие атома азота в 5-состоянии возникает из-за обменной поляризации 15- и Зх-орбиталей тремя неспаренными 2р-электронами [51—53]. Суммарный электронный спин атома в 5-состоянии равен Поскольку спин ядра азота равен единице, у атомарного азота должно быть 12 магнитных энергетических уровней. Правила отбора в условиях сильного поля (Ато/ = О и = = 0 1) ограничивают число переходов между магнитными уровнями до девяти. При отсутствии расщепления уровней основного состояния атома азота в нулевом поле должен наблюдаться спектр ЭПР из трех линий, обусловленный взаимодействием с ядром азота уровни тонкой структуры трехкратно вырождены (частота резонансных переходов между энергетическими уровнями с равными и и и — /21 одинакова). Таким образом, у атомов азота в 5з/ -состоянии должен быть спектр, состоящий либо из трех, либо из девяти линий. [c.120]

    Магнитный момент у атомов или молекул может быть результатом возникновения круговых токов в электронной оболочке или наличием неспаренных электронных спинов. Как известно, вещества, обладающие магнитными моментами такого рода, называют парамагнитными. В молекулах многих веществ, в том числе и большинства полимеров, электронный магнитный момент скомпенсирован. Подобные вещества относят к категории диамагнитных. Однако некоторые атомные ядра, например водорода и фтора, обладают собственными магнитными моментами, обусловленными их спинами. Поэтому в диамагнитных веществах энергия электромагнитного поля может поглощаться только ядерными магнитными моментами. Последние на три порядка меньще магнитных моментов электронов, поэтому резонансные частоты при магнитном резонансе на электронах значительно выше, чем резонансные частоты на ядрах, что определяет различие радиотехнических схем регистрации в обоих методах. [c.267]

    Метод электронного парамагнитного резонанса (ЭПР). Свободные органические радикалы и парамагнитные ионы содержат электроны с неспаренными спинами. Во внешнем магнитном поле, например в магнитном поле Земли, неспаренные электроны ориентируются либо по направлению поля, либо против него, практически равномерно распределяясь между этими двумя состояниями с неравными энергиями. При наложении электромагнитного ноля определенной частоты (обычно это микроволновый диапазон 10 гц) свободные электроны совершают переходы между двумя энергетическими состояниями, и при этом возникает резонансное поглощение энергии электромагнитного поля. Поскольку локальные магнитные поля, в которых находятся свободные электроны, различны, резонансное поглощение наблюдается при различных частотах. По значению этих частот можно судить о том, в каком окружении находятся свободные электроны. [c.181]

    В различных молекулах или в пределах одной молекулы однотипные ядра (например, протоны) могут иметь различные константы экранирования и, следовательно, различные условия резонанса. Рассмотрим, например, условия резонанса протонов и атомов углерода метильных групп тетраметилсилана, триметиламина и диметилового эфира. Очевидно, что электронная плотность на атомах углерода и на протонах в ряду этих соединений уменьшается ввиду увеличения электроотрицательности гетероатома. Если зафиксировать частоту электромагнитного поля V( и плавно повышать напряженность постоянного магнитного поля (развертка по полю), то условия резонанса наступят раньше (т.е. при более слабом поле) для протонов метильных групп диметилового эфира (ДМЭ), затем - триметиламина (ТМА) и, наконец,-тетраметилсилана (ТМС) (рис. 5.5). Если, наоборот, зафиксировать напряженность Hq и плавно менять частоту электромагнитного поля (развертка по частоте), резонансная линия протонов тетраметилсилана появится при более низкой частоте радиочастотного поля, затем линия протонов триметиламина-при более высокой частоте и, наконец, линия диметилового эфира-при самой высокой частоте. Рис. 5.5 есть [c.282]


    В молекуле органического соединения различные протоны имеют различное электронное окружение. Резонансные сигналы протонов наблюдаются вследствие этого в широком диапазоне частот, что позволяет различать протоны, входящие в молекулу. [c.542]

    Атомные ядра и электроны обладают магнитными моментами. Это свойство используют в технике магнитной резонансной спектроскопии наложение магнитного поля на ядра и электроны приводит к расщеплению квантовых состояний магнитного момента на ряд энергетических уровней (расщепление Зеемана). Относительно направления приложенного магнитного поля магнитный момент ориентируется в определенных направлениях, отличающихся по магнитной энергии. Наряду с магнитным моментом, ядра и электроны имеют спиновый момент количества движения. Компонент момента количества движения вдоль направления приложенного магнитного поля является целым или полуцелым числом, кратным основной единице момента количества движения Ь (константа Планка, деленная на 2ц). Ядро (или система электронов) со спином / (или 5) могут иметь только 2/ -Ь 1 различных ориентаций в постоянном магнитном поле и, следовательно, 2/ +1 состояний с различной магнитной энергией. Переходы магнитного момента между этими состояниями, сопровождающиеся резонансным поглощением магнитной энергии, происходят под действием излучения соответствующей частоты и поляризации. Наблюдая интенсивности и частоты резонансного поглощения в исследуемом материале, можно установить детали окружения ядер и электронов. Так как большинство веществ, представляющих интерес в гетерогенном катализе, является твердыми телами, в последующем изложении будет обращено особое внимание на магнитный резонанс в твердых телах. [c.9]

    По существу, явления ЭПР и ЯМР имеют одну природу. Разница заключается в том, что с магнитным полем взаимодействуют различные магнитные диполи, поскольку электронный парамагнетизм значительно больше ядерного. Так как ядерный парамагнетизм намного слабее электронного, то электронное окружение парамагнитного ядра существенно отражается на частоте резонансного поглощения. Это видно на рис. П-34, на котором приведен спектр ЯМР этанола Hg— Hj—ОН, молекула которого содержит шесть атомов водорода, находящихся в различном окружении один атом водорода связан с атомом кислорода в гидроксильной группе, два атома водорода входят в группу СНг и три — в группу СНд. Все шесть атомов водорода имеют одинаковый ядерный [c.112]

    II. В высокочастотной области, соответствующей колебательным движениям малых и даже очень малых групп (атомы водорода, отдельные электроны), зондирование структуры основано на несколько ином принципе. Возникновение организованных, в первую очередь кристаллических, структур сразу же резко ограничивает подвижность наблюдаемых при соответствующей частоте групп. По аналогии с температурными искажениями релаксационного спектра это должно приводить к смещению или размазыванию резонансных линий. В радиочастотном диапазоне это может быть расширение линий протонного магнитного резонанса при введении в полимер. электронного парамагнитного зонда — какого-либо устойчивого свободного радикала— характер его ЭПР-сигнала меняется в зависимости от плотности окружения, т. е. от того, находится ли он в кристаллической, жидкокристаллической или изотропной (аморфной) области. В оптическом диапазоне по тем же причинам могут изменяться форма, положение и интенсивность полос колебательных спектров (часто приходится, например, встречаться с термином кристаллическая полоса ). Можно вводить в-полимер электронный зонд— люминофор (например, антрацен) и по изменениям спектральных характеристик поляризованной люминесценции снова судить о подвижности или плотности тех участков, в которых расположен люминофор. [c.54]

    Плотность жидкости определяется путем измерения резонансной частоты. Одновременное измерение плотности позволяет измерять не только динамическую, но и кинематическую вязкость. Вискозиметр имеет несколько диапазонов измерения вязкости. Если вязкость жидкости выходит за установленный диапазон, то в электронном преобразователе предусмотрено автоматическое переключение на другой диапазон. [c.58]

    Рассмотрим такую важную характеристику спектров ЯМР, как химический сдвиг, которая чрезвычайно чувствительна к изменению электронного окружения ядра. Одним из первых применений ядерного магнитного резонанса явилась проверка экспериментальным способом расчетных данных резонансных частот ядер в заданном магнитном поле. Однако было установлено, что полученные при этом результаты зависят от химического окружения ядер. Это явление имеет общий характер и называется химическим сдвигом . [c.258]

    Изменение резонансной линии поглощения в зависимости от степени электронного экранирования обусловливает химический сдвиг б. Величины химических сдвигов измеряют в миллионных долях (м. д.) резонансной частоты ял и приложенного магнитного поля Яо  [c.259]

    В соответствии с существующей в настоящее время теоретической концепцией получение абсолютно чистых веществ т. е. совершенно не содержащих примесей) принципиально возможно, но только в очень небольшой области концентраций для достаточно большой пробы чистого вещества и за более или менее ограниченный промежуток времени. Для контроля чистоты необходимы особо чувствительные методы анализа. Применение методов ультрамикроанализа позволяет осуществить мечту аналитиков — обнаружение отдельных атомов в матрице вещества. Одним из таких методов является лазерная спектроскопия. Вещество испаряют и атомы селективно возбуждают действием лазерного излучения в узкой области частот. Возбужденный атом затем ионизируется вторичными фотонами. Число испускаемых при этом свободных электронов фиксируют пропорциональным счетчиком. С помощью эффективно действующей лазерной установки можно ионизировать все атомы определяемого вещества. Метод, основанный на использовании этого явления, называют резонансной ионизационной опектро-скопией (РИС). Например, можно определять отдельные атомы цезия. В другом варианте метода — оптически насыщенной нерезонансной эмиссионной спектроскопии (ОНРЭС) — измеряют интенсивность флуоресцентного излучения возбужденных атомов. Чтобы отличить излучение определяемых элементов от излучения других компонентов пробы, длины волн флуоресценции сдвигают воздействием других атомов или молекул. Этим методом также можно определять отдельные атомы вещества, например натрия. [c.414]

    Строение и свойства полимеров в последние годы начали исследовать методами радиоспектроскопии. Наиболее важен раздел радиоспектроскопии, связанный с магнитными свойствами электронных оболочек молекул и атомных ядер, поэтому его называют спектроскопией магнитного резонанса или просто магнитным резонансом, обусловленным поглощением энергии переменного магнитного поля имеющимися в веществе магнитными моментами, которое происходит на резонансной частоте. [c.267]

    Другой тип энергетических потерь в диэлектриках связан с электронной Рэл и атомной Рат поляризациями, обусловленными смещениями (ток смещения) под действием электрического поля электронов, ядер, ионов или атомных групп (резонансное поглощение). Для практического применения диэлектриков представляет интерес рассмотрение деталей перехода от установившейся полной поляризации при низких частотах к поляризации при оптических частотах, так как они непосредственно связаны с разделением поляризации при низких частотах на ее составляющие ориентационную и деформационную (атомную и электронную). Резонансные потери проявляются при частотах Ю —10 Гц (миллиметровая и инфракрасная области длин волн). Существование их у полимеров обусловлено наличием собственных колебаний атомных групп. Некоторые полосы поглощения в инфракрасной области связаны с трансляционными движениями диполей. Характер изменения потерь энергии при этом имеет сходство с соответствующими зависимостями при дипольной релаксации. Мнимая составляющая " обобщенной диэлектрической проницаемости е изменяется в окрестности резонансной частоты примерно так же, как и при дипольной релаксации (проходит область максимума), хотя потери энергии в этом случае имеют другую природу и требуют иного аналитического описания. В то же время диэлектрическая проницаемость е при дипольной релаксации и резонансном поглощении изменяется ио-разному. [c.178]

    Магнитный момент у атомов или молекул может быть обусловлен круговыми токами в электронной оболочке и неспаренным электронным спином. Вещества, которые обладают магнитными моментами такого рода, называются парамагнитными. В молекулах различных веществ, в том числе в большинстве полимеров, электронный парамагнитный момент скомпенсирован. Такие вещества называются диамагнитными. Однако атомные ядра, например водорода и фтора, обладают собственными магнитными моментами, связанными с их спинами. Поэтому в диамагнитных веществах поглощение энергии электромагнитного поля может осуществиться только магнитными моментами ядер. Магнитные моменты атомных электронов на три порядка больше, чем ядерные магнитные моменты, поэтому резонансные частоты при магнитном резонансе па электронах значительно выше, чем резонансные частоты на ядрах, что определяет для этих методов различие радиотехнических схем. [c.211]

    Важно отметить, что переходы с частотами, отличающимися ДЛЯ разных методов иногда на много порядков, как в резонансных методах (ЯМР, ЭПР, ЯКР, ЯГР), зависят от строения химических частиц (электронной структуры, окружения ядра, геометрии ядерного скелета, симметрии и т. д.), что больше всего и представляет интерес для химика. [c.3]

    Выше рассматривалось только взаимодействие ядер с внешним магнитным полем и полностью игнорировалось влияние электронного окружения и взаимодействие спинов ядер между собой. Для химии метод ЯМР важен прежде всего именно потому, что резонансные частоты ядер зависят от тонких магнитных взаимодействий, т. е. в конечном счете от особенностей строения и распределения электронной плотности в молекулах. [c.17]

    Электронный парамагнитный резонанс. Е, К. Завойский в 1944 г., проводя в Казанском университете исследования парамагнитной релаксации на высоких частотах при параллельной и перпендикулярной ориентациях постоянного и переменного магнитных полей, обнаружил интенсивное резонансное поглощение высокочастотной энергии при строго определенных отношениях напряженности постоянного магнитного поля и частоты. Это открытие, широко используемое в настоящее время, известно под названием электронного парамагнитного резонанса. [c.63]

    Таким образом, электронный парамагнитный резонанс представляет собой явление вынужденного перехода электронов с одного энергетического уровня на другой под действием переменного поля резонансной частоты. При этом часть энергии высокочастотного поля поглощается образцом и тратится на его нагревание. [c.64]

    Принцип ЭПР-спектроскопии заключается в том, что вещество, содержащее неспаренные электроны, помещается в магнитное поле и облучается электромагнитными волнами. На резонансной частоте V, которая определяется равенством гу = =ку /2п и равна Уе/2п, где 7 — гиромагнитное отношение для электрона, происходит поглощение энергии, что фиксируется специальным устройством, принимающим энергию. При Я 3000 гаусс V 10 с что соответствует длине волны в 3 см (микроволновой диапазон). [c.298]

    Влияние ядра первого протона приводит к тому, что у половины радикалов неспаренный электрон оказывается в суммарном магнитном поле ЯвнЧ-АЯ/ (спин ядра ориентирован по полю), у другой половины радикалов — в поле Я н—ДЯ (спин ядра ориентирован против поля). Поскольку при фиксированной частоте резонансное поглощение всегда наблюдается при суммарной напряженности магнитного поля на элек- [c.28]

    Практически для наблюдения ЭПР-спектров выбирают поле Н порядка 3000 э, тогда частота резонансных колебаний V оказывается порядка v=10 , что соответствует ультракоротким радиоволнам с длиной волны 3 см. Пользуясь ультракоротковолновой техникой, можно наблюдать спектр поглощения трехсантиметровых радиоволн (отсюда термин — радиоспектроскопия) образцом, содержащим неспарепные электроны и помещенным в магнитное поле, где величина магнитного поля точно подгоняется к условию резонанса. Спектр парамагнитных частиц должен был бы состоять из одной единственной линии поглощения. В действительности же наблюдается интересное осложнение, [c.193]

    Кроме этих дипольных эффектов в ЯМР, для нахождения используют и другие эффекты, изучаемые с помощью резонансных методов квадрупольное расщепление в ЯМР с использованием ядер со спином /> 1, таких, как [12] или дейтерий [13], и анизотропию зеемановского и сверхтонкого расщеплений в электронном спиновом резонансе (ЭСР) растворенных свободных радикалов [14, 15]. Последний метод имеет одно преимущество — высокая интенсивность сигнала позволяет применить метод Для очень малых образцов. Однако у него есть и недостатки. Во-первых, при его использовании всегда имеют дело с ориентацией растворенного вещества, а не с упорядочением самой нематической матрицы. Во-вторых, предел быстрого движения, применимый к ЯМР (из-за чего можно было свести Ш к не всегда осуществляется в ЭСР. Характерные электронные частоты могут быть сравнимыми с 1/тцращ1 в результате чего получается широкий спектр и определение 8ц становится неточным ). [c.44]

    Многие молекулярные процессы, которые наиболее интересны для химиков, связаны с обменом ядер или электронов. При таком обмене спин случайным образом изменяет свое окружение, в результате чего изменяется его спин-гамильтониан, что в свою очередь вызывает характерное изменение мультиплетной структуры сложных спектров. Одни линии уширяются, другие остаются узкими, некоторые группы линий сливаются в одну линию. Эти эффекты почти всегда обусловлены движениями, которые имеют гораздо более низкие частоты, чем ларморова частота. Частоты этих движений сравнимы с разностью частот резонансных линий для ЭПР они составляют несколько мегагерц, для ЯМР — несколько герц. [c.266]

    Другим методом, который может быт], использован для изучения очень б .1Строго переноса электрона в системах, в которых константа равновесия близка к единице, является ЯМР [97]. Если один из атомов реагирующего вещества ихмеет ядерный момент, то частота резонансного пог.тощения будет изменяться от состояния окисления, вызывая уширение линии поглощения, ио которохму можно рассчитать константу скорости [71, 83]. Скорость должна быть достаточно велика, чтобы изменить ширину линий. Наиболее удобно исследовать реакции с периодом полупревращения порядка микросекунд. [c.417]

    Так как, согласно (7.30), то при фиксированной частоте резонансные значения магнитного поля пропорциональны частоте в степени Ярез мЧ Резонансные ларморовские частоты весьма малы и не зависят от глубины скип-слоя. Интервал магнитных полей, в котором может наблюдаться резонансное поглощение энергии па поверхностных уровнях, ограничен как снизу (см. второе из неравенств (7.32)), так и сверху, ибо с ростом Я растет ф1 Я /=, а при достаточно больших ф отражение от поверхпости становится существенно диффузным. Это, по-видимому, не относится к электронам в металлах типа В и в аномально мало заполненных зонах обычных металлов, длина волны де Бройля которых значительно больше постоянной решетки. [c.358]

    В зависи.мости от того какие лучи электромагнитного спектра пропускать через вещество, могут возбуждаться либо вращательные, либо колебательные движения, либо электронные переходы, либо все виды движений одновременно. Возбуждение того или иного движения в молекуле происходит тогда, когда его частота совладает с частотой электромагнитного колебания (резонанс). Наибольшей энергией обладают рентгеновские лучи (Я = 0,01 — 10А), еатем ультрафиолетовые лучи (10ч-4000.4), затем видимый свет (4000.А.8000А), затем инфракрасные лучи (0,8—300 р), затем микроволны 0,03—100 см и далее радиоволны. Энергия радиоволн слишком мала, чтобы возбуждать колебания молекул органических веществ. Микроволны и длинные инфракрасные волны могут возбуждать только вращательные движения в молекулах. Если частоты колебания этих волн совпадают с собственной частотой вращения отдельных частей молекулы, то происходит резонансное поглощение энергии инфракрасного облучения этой частоты, что отразится в спектре поглощения. Такого рода спектры применяются для тонкого структурного анализа органических веществ. Инфракрасные спектры органических соединений обычно изучают в пределах длтш волн 1 25 х, при этом линии поглощения Б спектре появляются за счет вращательного п колебательного движения в молекулах исследуемого вещества. Каждой функциональной группе и группе атомов в молекуле исследуемого соединения в спектре соответствует одна или несколько линий с опре-денной длиной волны. С помощью инфракрасных спектров можнс проводить идентификацию чистых углеводородов, анализировать качественно и количественно смеси нескольких компонентов вплотг-до обнаружения таких близких структур как цис- и транс-изомеры. На рис. 16 приведен г /с-спектр толуола. [c.32]

    Другой разновидностью вибрационного вискозиметра является вискозиметр 7827 фирмы Solartron , который одновременно измеряет плотность и температуру продукта. Вискозиметр состоит из сенсора и электронного преобразователя 7945V. Сенсор представляет собой виброэлемент, его можно рассматривать как камертон, поддерживаемый в состоянии резонанса, который устанавливается на трубопроводе. Затухание колебаний зубцов камертона зависит от вязкости жидкости. Вязкость обратно пропорциональна квадрату коэффициента добротности, определяемого как отношение резонансной частоты к ширине полосы, соответствующей ослаблению 3 дБ Q = /р/(/г ), где Q - коэффици- [c.57]

    Возможно применение предварительного усиления СВЧ-колебаний специальными устройствами (например, лампой бегущей волны). Модуляция магнитного поля на глубину, меньшую ширины резонансной линии, обычно производится с высокой частотой (100 кГц — 1 МГц). Основное усиление производится избирательным усилителем, настроенным " на эту частоту. Это позволяет избавляться от интенсивных низкочастотных шумов кристаллического детектора. Требования, предъявляемые кэкс-перилментальным установкам для наблюдения электронного резонанса, полностью аналогичны требованиям, предъявляемым к ядер-норезонансным спектрометрам. [c.229]

    При наложении переменного поля резонансной частоты начинаются переходы между уровнями, что ведет к поглощению энергии переменного поля. Это явление и называется ядерным квадрупольным резонансом (ЯКР). В случае ЯКР имеет место прецессия отдельных ядер (а не электронов), способных вращаться в поле своей электронной оболочки (эллипсоидные ядра). В отличие от сферических атомов, у которых заряды распределены равномерно, продолговатые ядра (характерные, например, для галогенов, в частности хлора) обладают квадрупольным электрическим моментом. Для веществ с такими ядрами можно наблюдать четкую линию квадрупольиого резонанса. Чувствительность метода ЯКР настолько велика, что можно фиксировать резонансные частоты атомов, обладающих разными химическими свойствами (так, в случае поливинилхлорида для них получаются значения частот 37,25 и 38,04 МГц). [c.230]

    Константы СТВ можно выпазить и в единицах индукции поля В (тесла), если поделить их на jab. Принимая для свободного электрона резонансное значение Bq при постоянной частоте v, т. е. условие резонанса hv=g iBBo, при развертке спектра по полю (при вариации его вблизи Во) для резонансных линий взаимодействующего с ядрами электрона из (П1.13) получим [c.60]


Смотреть страницы где упоминается термин Электроны частота резонансная: [c.282]    [c.164]    [c.148]    [c.85]    [c.98]    [c.60]    [c.64]    [c.52]    [c.259]    [c.88]    [c.148]    [c.350]   
Современная аналитическая химия (1977) -- [ c.192 ]




ПОИСК





Смотрите так же термины и статьи:

Резонансные

Частота резонансная



© 2024 chem21.info Реклама на сайте