Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Оксид мышьяка сурьмы

    По химическому составу полупроводники весьма разнообразны. К ним относятся элементарные вещества, как, например, бор, графит, кремний, германий, мышьяк, сурьма, селен, а также многие оксиды ( uaO, ZnO), сульфиды (PbS), соединения с индием (InSb) и т. д. и многие соединения, состоящие более чем из двух элементов. Известны и некоторые органические соединения обладающие полупроводниковыми свойствами. Таким образом, к полупроводникам относится очень большое число веществ. Обусловлены полупроводниковые свойства характером химической связи (ковалентным, или ковалентным с некоторой долей ионности), типом кристаллической решетки, размерами атомов, расстоянием между ними, их взаиморасположением. Если химические связи вещества носят преимущественно металлический характер, то его полупроводниковые свойства исключаются. Зависимость полупроводниковых свойств от типа решетки и от характера связи ясно видна на примере аллотропных модификаций углерода. Так, алмаз — типичный диэлектрик, а графит — полупроводник с положительным температурным коэффициентом электропроводности. То же у олова белое олово — металл, а его аллотропное видоизменение серое олово — полупроводник. Известны примеры с модификациями фосфора и серы. [c.298]


    Химические свойства мышьяка, сурьмы и висмута имеют промежуточный характер. У висмута преобладают металлические свойства. Аз, 5Ь и В1 растворяются в кислотах, способных действовать как сильный окислитель. Так, висмут растворяется в азотной кислоте с образованием оксида азота (П) и нитрата Bi(NOз)з, мышьяк окисляется азотной кислотой в мышьяковую кислоту  [c.184]

    Отвечающие оксидам сульфиды мышьяка, сурьмы и висмута могут быть получены непосредственным взаимодействием элементов с серой при нагревании или путем обменного разложения в растворах, например [c.302]

    Научные работы относятся к различным областям физики и химии. В 1811 заложил основы молекулярной теории, обобщил накопленный к тому времени экспериментальный материал о составе веществ и привел в единую систему противоречащие друг другу опытные данные Ж. Л. Гей-Люсса-ка и основные положения атомистики Дж. Дальтона, отвергнув часть последних. Открыл (1811) закон, согласно которому в одинаковых объемах газов при одинаковых температурах и давлениях содержится одинаковое количество молекул (закон Авогадро). Именем Авогадро названа универсальная постоянная — число молекул в 1 моле идеального газа. Создал (1811) метод определения молекулярных масс, посредством которого по экспериментальным данным других исследователей первым правильно вычислил (1811—1820) атомные массы кислорода, углерода, азота, хлора и ряда других элементов. Установил количественный атомный состав молекул многих веществ (в частности, воды, водорода, кислорода, азота, аммиака, оксидов азота, хлора, фосфора, мышьяка, сурьмы), для которых он ранее был определен неправильно. [c.10]

    Мышьяк и сурьма по большинству химических свойств напоминают фосфор. Например, оба эти элемента образуют га.погениды состава МХ3 и МХ5, структура и химические свойства которых близки соответствующим галогенидам фосфора. Соединения этих элементов с кислородом также очень сходны с соответствующими соединениями фосфора, однако они не так легко достигают своей высшей степени окисления. Так, при горении мышьяка в кислороде образуется продукт формулы А540й, а не А540,о- Высший оксид мышьяка можно получить окислением А540б каким-либо сильным окислителем, например азотной кислотой  [c.327]

    Раствор сульфата кадмия очищают нейтрализацией. Нейтрализация приводит к осаждению железа, мышьяка и некоторых других элементов. В качестве нейтрализующего агента на схеме приведен оксид цинка, который осаждает железо в виде гидроксида. Соединения железа (П) переводят в железо (П1) путем окисления хлоратом натрия это необходимо для более полного осаждения железа. Оксид цинка гакже осаждает мышьяк, сурьму, индий, галлий, германий и таллий, если они присутствуют в смеси. Наличие других примесей может потребовать дополнительной обработки. Так, например, медь можно осадить цинковой пылью. [c.76]


    Для получения мышьяка, сурьмы и висмута их природные сульфиды обжигают образующиеся при этом оксиды восстанавливают углем  [c.381]

    Мышьяк, сурьму и висмут в свободном состоянии получают обычно путем карбо- или металлотермического восстановления оксидов. Сульфидные минералы при этом предварительно подвергают окислительному обжигу. Поскольку мышьяк и его аналоги обычно ассоциированы со многими металлами, в процессе восстановления образуются интерметаллические сплавы (твердые раство- [c.284]

    Оксиды и гидроксиды мышьяка, сурьмы и висмута. Мышьяк и сурьма образуют два типа оксидов (АзаОз, ЗЬгОз и AS2O5, бЬгОб), висмут — только низший оксид (В120з). Низшие оксиды мышьяка, сурьмы и висмута представляют собой твердые вещества белого (АзгОз, ЗЬ гОз) или желтого (В гОз) цвета. Оксид мышьяка (И1) (мышьяковистый ангидрид) АзгОз довольно хорошо растворим в воде, а ЗЬгОз и В120з в воде почти нераство-пимы. Плохо растворимы также и гидроксиды В1(0Н)з и 5Ь(ОН)з. [c.189]

    Именно в силу обретения А. собственного теоретич. взгляда на свой предмет главные практич. вклады А. приходятся на 8-12 вв. в арабском мире и на 12-14 вв. в Европе. Получены серная, соляная и азотная к-ты, винный спирт, эфир, берлинская лазурь. Создано разнообразное оснащение мастерской-лаборатории - стаканы, колбы, фиалы, чаши, стеклянные блюда для кристаллизации, кувшины, щипцы, воронки, ступки, песчаная и водяная бани, волосяные и полотняные фильтры, печи. Разработаны операции с различными в-вами-дистилляция, возгонка, растворение, осаждение, измельчение, прокаливание до постоянного веса. Расширен ассортимент в-в, используемых в лаб. практике нашатырь, сулема, селитра, бура, оксиды и соли металлов, сульфиды мышьяка, сурьмы. Разработаны классификации в-в. Впервые описано взаимодействие к-ты и щелочи. Открыты сурьма, цинк, фосфор. Изобретены порох, фарфор. Бонавентура (13 в.) установил факт растворения серебра и золота в царской водке. В трактате Р. Бэкона Зеркало алхимии можно усмотреть неосознанное приближение к правилам стехиометрич. соотношений и принципу постоянства состава. Ему же принадлежит систематизированное описание св-в семи известных тогда металлов. Но успехи прикладного св-ва А. должна разделить с хим. ремеслом. [c.108]

    Оксиды сурьмы (V) и особенно висмута (V)—малоустойчивы. Соединения мышьяка, сурьмы и висмута в [c.162]

    Получение и применение. Мышьяк, сурьму и висмут получают, подвергая обжигу сульфиды и восстанавливая образовавшиеся оксиды углем, например  [c.163]

    Химия оксидов трехвалентных мышьяка, сурьмы, висмута [c.662]

    Реакции мышьяка, сурьмы и висмута с азотной кислотой ведут к образованию мышьяковой кислоты, гидратированного оксида сурьмы(У) и соли — нитрата висмута(1П)  [c.241]

    Общая характеристика подгруппы. В эту подгруппу входят азот, фосфор, мышьяк, сурьма и висмут. Они характеризуются одинаковой структурой наружного энергетического уровня электронных оболочек атомов пз пр , чем объясняется сходство многих химических их свойств. Они образуют оксиды Э2О3 и ЭгОд, в которых все элементы проявляют валентность, равную трем или пяти. С водородом эти элементы образуют газообразные соединения типа ЭНз. [c.351]

    Исходным сырьевым материалом для восстановительной шахтной плавки на черновой свинец является офлюсованный самоплавкий агломерат. Химический и минералогический составы свинцового агломерата очень сложны. В нем, кроме свинца, как правило, присутствуют медь, цинк, мышьяк, сурьма, золото, серебро, олово, висмут, железо и другие элементы. Основную массу агломерата представляют свободные и связанные в более сложные соединения оксиды. [c.339]

    Содержание Аз, ЗЬ и В1 в земной коре невелико этр элементы встречаются преимущественно в виде сульфи дов РеАзЗ — арсенопирит, АзгЗз — аурипигмент, АзЗ — реальгар, ЗЬдЗз — антимонит, В123з — висмутин. В сво бодном состоянии мышьяк, сурьму и висмут получаю из сернистых руд прокаливанием на воздухе с последую щим восстановлением полученных оксидов углем  [c.334]

    Мышьяк, сурьму и висмут получают как металлы (разд, 8.6) при восстановлении их оксидов углеродом или водородом. Металлы горят при нагревании в кислороде с образованием оксидов. [c.342]

    Содержание Аз, 5Ь и В1 в земной коре невелико этп элементы встречаются преимущественно в виде сульфидов АвгЗз — аурипигмент, ЗЬгЗз — сурьмяный блеск, В125з — висмутовый блеск. В свободном состоянии мышьяк, сурьму и висмут получают из сернистых руд прокаливанием на воздухе с последующим восстановлением полученных оксидов углем  [c.265]

    Высшие оксиды мышьяка и сурьмы — мышьяковый ангидрид АзаОв и сурьмяный ангидрид ЗЬгОб —могут быть получены путем нагревания соответствующих кислот НзАз04 и 5Ь205 /Н2О, которые, в свою очередь, можно получить окислением мышьяка и сурьмы концентрированной НЫОз  [c.190]

    Кроме названных оксидов мышьяк, сурьма и висмут образуют оксиды в степени окисления +5. Оксид мышьяка (V) AS2O5 проявляет кислотные свойства. Он растворяется в воде с образованием мышьяковой кислоты  [c.162]


    Оксиды М2О5. Этот раздел посвящен пентаоксидам металлов УА группы. Оксиды мышьяка, сурьмы и висмута рассмотрены в гл. 20, РагОб и иОг.е — в разд. 28.2.3 и 28.2,4. Имеются сведения о соединении, которому приписывают формулу КегОз, но данный оксид охарактеризован не полностью [ ]. [c.255]

    Э2О3, которые при взаимодействии с водой образуют кислоты. Оксиды мышьяка (III), сурьмы (III) и висмута (III) амфотерны взаимодействуют с кислотами и щелочами  [c.232]

    Перманганатометрическое титрование лучше всего проводить в сильнокислой среде, подкисляя раствор серной кислотой. Серная кислота пригодна при титровании оксидов мышьяка (III) и сурьмы (III), перекиси водорода, ферроциаиида калия. В некоторых случаях, например при титровании железа (И), реакция окисления индуцирует окисление соляной кислоты до свободного хлора и хлорноватистой кислоты, на что расходуется добавочное количество перманганата калия. Однако окисление соляной кислоты можно предупредить, добавляя в [c.399]

    При взаимодействии мышьяка, сурьмы и висмута с кислородом при нагревании образуются оксиды в степени окисления элементов +3 AS2O3 —кислотный оксид, 5Ь20з — амфотерный оксид, В120з — основный оксид. [c.162]

    С< при обжиге и спекании и улавливании 90 % дыма в пылесборниках 5 — уплотнение, упаковка и транспортировка колошниковой пыли б — вода 7 — измельчение 8 — серная кислота — 2 части Н2504 на I часть (по массе) Сс 9— выщелачивание для растворения С< 0 — взвесь сульфата кадмия П — фильтрование 12 — сульфат свинца на Плавку для выделения свинца, серебра и золота 3 — раствор сульфата кадмия 4 — хлорат натрия (Ре +, Ре +) — I часть на 2 части (по массе) Сс ]5 — оксид цинка — 0,75 части на 1 часть (по массе) Сс1 16 — осаждение примесей (медь, мышьяк, сурьма, железо, никель, кобальт, таллий, серебро) 17 — цинковая пыль — 1 часть на I часть (по массе) Сс) 18 — очищеииый раствор сульфата кадмия 19 — осаждение кадмия 20 — товарный раствор сульфата цинка 21 — губчатый кадмий 22 — [c.75]

    Мышьяк, сурьма и висмут значительно менее распространены и не имеют такого жизненно важного значения, как азот и фосфор. Мышьяк знаменит тем, что образует очень ядовитые химические соединения. Оксид мышьяка АззОд ( белый мышьяк ) используют в стоматологии. Висмут входит в состав особо легкоплавких сплавов. Далее в настоящей главе будут рассмотрены только азот и фосфор и их соединения. [c.187]

    Известны два больших класса стекол с высокой электропроводностью (полупроводниковые). К первому классу относятся бескислородные халькогенидные стекла, состоящие из сульфидов, селенидов и теллури-дов фосфора, мышьяка, сурьмы и таллия. Второй класс составляют кислородные стекла, содержащие большие количества оксидов ванадия, вольфрама, марганца, кобальта, железа, титана. Наилучшими технологическими свойствами (хорошей химической стойкостью, высокой температурой размягчения) обладают силикатные стекла с оксидами железа и титана. [c.348]

    Мышьяк, сурьму и висмут в свободном состоянии получают обычно путем карбо- или металлотермического восстановления оксидов. Поскольку мышьяк и его аналоги обычно ассоциированы со многими металлами, в процессе восстановления образуются сплавы. Восстановленный полупродукт подвергают хлорированию. Летучие хлориды мышьяка, сурьмы и висмута отгоняют, подвергают дистилляции, а затем восстанавливают, например водородом, цинком и т.п. Окончательная очистка мышьяка достигается вакуумной пересублимацией. Сурьму и висмут подвергают глубокой очистке методами направленной кристаллизации или зонной плавки. Такие методы очистки позволяют получить мышьяк, сурьму и висмут с суммарным содержанием примесей, не превосходящим Ю —10 масс, долей, %. [c.419]

    В природе никель встречается в сочетании с мышьяком, сурьмой и серой, как в минерале миллерите NiS, а также в виде гарниерита— никель-магниевого силиката переменного состава. Никель в сплавах с железом обнаруживают в метеоритах полагают, что он в значительных количествах входит в состав земного ядра. Общая схема получения никеля включает первоначальный обжиг руд до NiO с последующим восстановлением оксида до металла с помощью углерода. Никель обычно очищают электролитическим переосаждением, но особо чистый металл по-прежцему получают с помощью карбонильного процесса. Оксид углерода реагирует с неочищенным никелем при 50 °С и нормальном давлении или с медно-никелевым штейном при более жестких условиях. При этом [c.478]

    При обычных комнатных температурах арсин и стибин устойчивы и разлагаются лишь при нагревании. Этим пользуются для обнаружения Аз и 8Ь в образце (проба Марща). В электрохимическом ряду напряжений элементы Аз, 5Ь и В1 располагаются между во-доролом и медью. Значит, из кислот они не выделяют водорода и нерастворимы в них. Устойчивость различных аллотропных форм мышьяка (белая, желтая, серая и черная) неодинакова. Некоторые из них устойчивы на воздухе (черная), некоторые нет (белая, желтая), а металлическая серая постепенно теряет блеск из-за образования на поверхности оксида АЗ2О3. Сурьма на воздухе нри обычных условиях не окисляется, а при нагревании с кислородом дает ЗЬгОз. Высшие оксиды АзгОн и ЗЬгОз прямым взаимодействием из свободных веществ получить нельзя, а только осаждением гидратных форм и осторожным выпариванием [c.339]


Смотреть страницы где упоминается термин Оксид мышьяка сурьмы: [c.22]    [c.436]    [c.151]    [c.286]    [c.420]    [c.49]    [c.639]    [c.657]    [c.52]    [c.420]    [c.190]    [c.340]   
Руководство по неорганическому синтезу Т 1,2,3,4,5,6 (1985) -- [ c.639 ]




ПОИСК





Смотрите так же термины и статьи:

Мышьяка оксиды

Сурьма оксиды

Химия оксидов пятивалентных мышьяка и сурьмы



© 2025 chem21.info Реклама на сайте