Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение урана титрованием железом III

    Молибден, хром и ванадий восстанавливаются свинцом, и так как продукты, их восстановления титруются иодом, то для олова получаются повышенные результаты. Присутствие этих элементов обнаруживается по изменению окраски раствора при восстановлении олова. Молибден, например, после восстановления окрашивает раствор в коричневый цвет, а ванадий — в пурпуровый. Малые количества мышьяка не мешают определению Из остальных веществ, не мешающих титрованию, можно отметить сульфаты, фосфаты, иодиды, бромиды, фториды, железо, никель, кобальт, цинк, марганец, уран, алюминий, свинец, висмут, магний и щелочноземельные металлы. [c.339]


    Мор [7561 показал, что уран (IV) может быть определен окислением железом (III) с последующим иодометрическим титрованием его избытка. Однако из-за низкой точности определения, вследствие зависимости количества выделяющегося свободного иода от кислотности раствора, концентрации иодида калия и ряда других условий этот метод не находил практического применения. [c.97]

    По окончании разложения железо частично или полностью переходит в трехвалентное состояние, поэтому перед титрованием окислителем необходимо предварительное восстановление железа любым из описанных ранее методов, например восстановление в редукторе Джонса. Амальгама цинка восстанавливает и другие элементы, обычно сопутствующие железу, например титан, ниобий, ванадий, хром, уран, вольфрам, молибден и мышьяк. В низших степенях окисления они также реагируют с перманганатом их присутствие вызывает завышение результатов определения железа. [c.380]

    Титан (III) и (II). При определении титана в титановых белилах [10], титановых минералах [10], в сталях [8], в веществах, содержащих уран [11], титруют стандартным раствором соли железа (П1) (обычно в атмосфере неактивного газа) [8, 9] после растворения анализируемого материала и восстановления Tii " в редукторе. Конечную точку титрования определяют электрометрически или визуально. [c.153]

    Кулонометрическое титрование имеет в ряде случаев значительные преимущества перед обычным титрованием. Не нужно заранее готовить рабочие растворы и устанавливать их точную концентрацию. В качестве генерирующих титрующих веществ могут применяться вещества, мало устойчивые в обычных условиях и непригодные поэтому для приготовления рабочих растворов. Различные окислители легко определять генерированными ионами двухвалентного олова, одновалентной меди, трехвалентного титана, двухвалентного хрома и др. Так титруют, например, хром, марганец, ванадий, уран, церий и некоторые другие элементы после предварительного перевода их в соединения высшей валентности. Для титрования восстановителей, например, трехвалентных мышьяка и сурьмы, одновалентного таллия, двухвалентного железа применяют генерированные свободный бром и иод, ферри-цианид и др. Подбирая соответствующие индикаторные системы для установления конца электролиза, можно также определять два или более окислителей или восстановителей в смеси, если их потенциалы восстановления различны. Известны, например, методы кулонометрического титрования урана и ванадия, хрома и ванадия, железа и ванадия, железа и титана в смеси. Наконец, кулонометрический метод допускает автоматизацию процесса титрования и управление им на расстоянии, что имеет важное значение при определении, например, различных искусственных радиоактивных элементов. [c.273]


    Из рассмотренных примеров фотохимического комплексонометрического титрования отдельных катионов и их смесей видно, что фотохимическое титрование можно применять для определения катионов, которые сами не способны восстанавливаться под действием света. Это значит, что можно определять очень многие элементы, как те, которые могут фотохимически восстанавливаться или окисляться (элементы с переменной валентностью), например железо, медь, серебро, уран, молибден, вольфрам, рений, таллий, золото, ртуть, ванадий, хром, мышьяк и другие, так и элементы с постоянной валентностью, способные образовывать комплексные соединения и оказывать при этом ингибирующее или сенсибилизирующее действие на фотохимические реакции. К последней группе принадлежат практически все металлы, образующие двух-, трех- или четырехзарядные катионы. [c.40]

    Объемные методы, основанные па восстановлении амальгамами цинка 1, кадмия висмута или свинца с последующ им титрованием соответствующим окислителем, обычно перманганатом калия, вполне надежны для определения таких элементов, как железо, титан, молибден, уран и ванадий. Восстановление осуществляется в приборе, показанном на рис. 14. [c.141]

    В разделе Методы отделения (стр. 524) было указано, что в солянокислых и сернокислых растворах купферон образует нерастворимое соединение с ураном (IV). Уран (VI) при этом не осаждается. Поэтому в некоторых случаях целесообразно определять уран следующим образом. Сначала проводят осан дение купфероном из раствора, содержащего уран в шестивалентной форме. Осадок отфильтровывают и в фильтрате, после разрушения купферона и восстановления цинком, как это описано в разделе Объемное определение восстановлением цинком и титрованием перманганатом (стр. 529), осаждают уран (IV) купфероном. Таким путем железо, ванадий, титан и цирконий отделяются от урана, а затем уран в свою очередь отделяется от алюминия и фосфора. Хром (II) также частично осаждается купфероном, но его влияние можно устранить, подвергнув раствор действию воздуха, как указано выше (стр. 529). [c.531]

    Принцип. Раствор, содержащий трехвалентное железо и имеющий pH около 5, прямо титруют 0,1 М раствором комплексона с платиновым электродом. Определению не мешают щелочноземельные металлы, ионы уранила и марганца (II). Остальные катионы, образующие комплексы с комплексоном, мешают определению. Титрование можно проводить в присутствии фторидов и тартратов. [c.83]

    Описан ряд методов количественного определения элементов с помощью амперометрического титрования растворов их солей ферроцианидами по току окисления ферроцианида или восстановления определяемого металла. Метод применяется для определения меди [945], серебра [1049], свинца [945, 1013], церия [1357], ИНДИЯ [918], кадмия [945, 1074, 1092], железа [979], уранила [815, 1079] и молибдена [1062]. Титрование цинка [909, 923, 980, [c.278]

    Титрование сульфатом железа (III). Титан (IV) восстанавливают до титана (111) металлическим кадмием и титруют сульфатом железа (III) в присутствии роданида аммония или калия - . Железо не мешает определению. Если присутствует уран, то титан отделяют аммиаком и карбонатом аммония. [c.142]

    Из приведенных выше рисунков видно, что потенциал перегиба (= потенциал в точке перегиба) в случае одновременного определения получается иной, чем для той же реакции при отдельном определении. Например, в случае титрования соли окиси железа сульфатом хрома (2), он повышается вследствие присутствия соли уранила (рис. 16). [c.481]

    Ион гидроксила ОН" чаще всего используют в качестве осади-теля но при маскировании алюминия превращением его в алюминат, которое осуществляют при титровании кальция, образуется растворимый комплекс. Фторид-ион, в общем, тоже является мало селективным осадителем однако с трех- и четырехзарядными катионами он образует растворимые комплексы, так что Р -ион можно, например, применять для маскирования олова (IV) при определении олова (II) [59 (25)]. Почти все карбонаты металлов трудно растворимы, уранил же образует растворимый карбонатный комплекс, поэтому СОз -ион применяют для маскирования иОг -иона [52 (25)]. Пирофосфат-ионом можно маскировать железо (III) [c.137]

    В холодных кислых растворах, не содержащих нитрата серебра, персульфат аммония окисляет железо (II) и лишь очень медленно реагирует с ванадием (IV), перманганатом, марганцем (II) и хромом (III). На этом основан быстрый метод определения ванадия, который заключается в восстановлении ванадия (V) сульфатом железа (II), в окислении избытка последнего персульфатом и последующем титровании восстановленного ванадия перманганатом. Определению мешает вольфрам. Хром, никель, кобальт, молибден, мышьяк и уран не оказывают влияния на результаты. [c.470]

    Титрование проводят при потенциалах от —0,7 до —0,8 в в 20%-ном спиртовом растворе после удаления кислорода из раствора. Концентрация фосфата должна быть не более 0,01 моль л. Кальций и сульфат-ионы в больших количествах должны отсутствовать во избежание соосаждения фосфата с сульфатом кальция. Допустимое содержание кальция—не более 0,02 моль л, а сульфата—0,01 моль л. Магний и барий не мешают определению фосфата. Железо, а также свинец, алюминий и хром (III) осаждаются фосфатом и, следовательно, должны отсутствовать. Мешают определению ионы, реагирующие с уранил-ионами (пирофосфат, арсенат и ванадат), а также ионы, образующие с ними комплексы (цитрат, оксалат, ацетат [c.557]


    В другом методе уран (IV) титруют амперометрически [9] раствором соли железа (III) в среде 0,3 п. раствора H2SO4 с использованием платинового вращаюш,егося микроэлектрода в атмосфере СОз- Если присутствует U i, его восстанавливают цинком в редукторе Джонса в этом случае образуется смесь U и TJi , при титровании которой сначала окпсляется U до затем до При определении этим методом 5—200 мг U получаются удовлетворительные результаты. Определению не мешает железо. [c.155]

    Это определение было одновременно исследовано несколькими авторами. Согласно Фрицу и Форду [130], торий можно непосредственно титровать комплексонсм, если pH испытуемого раствора поддерживать в интервалах 2,3—3,4. Наиболее четкий переход окраски индикатора наблюдается при pH 2,8. В более кислых растворах (pH ниже 2,1) окраска раствора тория с индикатором слабее, в более щелочных растворах (pH выше 3,5) происходит гидролиз соли тория. Поэтому авторы рекомендуют следующий ход определения к 100 мл раствора, содержаи],его 120—240 мг тория, прибавляют 4 капли 0,05%-ного водного раствора индикатора и добавлением аммиака уменьшают кислотность анализируемого раствора до появления розовой окраски (pH 2,5). Титруют 0,025 М раствором комплексона почти до исчезновения окраски раствора. Затем pH раствора доводят до 3 (при потенциометрическом контроле) и дотитровывают раствором комплексона. Полученный раствор имеет чисто желтый цвет. Целесообразно проводить перемешивание при помощи электромагнитной мешалки. Аналогичным способом определяют и меньшие количества тория (6—50 мг в 25 мл раствора). Определению мешает присутствие железа, висмута, циркония, церия, олова, ванадия, свинца, меди и никеля. Как отмечают авторы, комплексометрическое определение тория приобрело большое значение вследствие возможности удовлетворительного отделения тория от мешающих элементов экстракцией его окисью мезитила (метод разработан Левеном и Гримальди [131]). Экстракцию проводят следующим образом к 1,2 Ж раствору соли тория прибавляют на каждые 10 мл 19 г нитрата алюминия в качестве высаливающего агента и одной экстракцией окисью мезитила отделяют торий от редкоземельных катионов, фторидов и фосфатов. Вместе с торием извлекаются ванадий, уран, цирконий и небольшое количество алюминия. Титрованию тория раствором комплексона не мешают алюминий и уран перед экстракцией тория следует предварительно отделить цирконий и ванадий. [c.363]

    Ряд авторов определяет сумму алюминия и железа и вводит поправку на последнее после определения его в аликвотной части раствора [369, 567, 623, 751]. Метод титрования с дитизоном описан для определения алюминия в сталях, в металлическом уране и его сплавах [833, 1091], в цементе [623], в силикатах и горных породах [223а, 557, 567, 707, 751, 1244, 1288], в кислотных водах [639, 654] и в других материалах. [c.71]

    В. В. Фомин, С. П. Воробьев и др. (1951 г.) применили титрование перманганатом для определения плутония в присутствии урана и железа. Раствор плутония в серной кислоте, содержащий железо и уран, предварительно восстанавливали при на Лре-вании сернистым газом, затем удаляли 502 пропусканием инертного газа и титровали сначала при комнатной температуре, а затем при 70° С. На первой стадии плутоний окисляется до че тырехвалентного, железо до трехвалентного и уран до шестивалентного состояния. На второй стадии титруется лишь плутоний до шестивалентного состояния. При титровании 13—14 мг плутония 0,04 N раствором КМПО4 в присутствии двукратного количества урана или половинного количества железа среднее отклонение составило—1,5%. При увеличении количеств урана и железа до соотношения О Ри = 3 и Ре Ри = 1 ошибки увеличиваются до—5%. [c.195]

    В. И. Кузнецов и В. А. Михайлов (1956 г.) показали возможность иодометрического определения Ри(1У) титрованием избытка тиосульфата натрия после добавления его к раствору, полученному растворением в 1 М Нг504 промытого водой осадка селенита плутония Ри(ЗеОз)2. Реакция осаждения селенита неизбирательна, вместе с плутонием осаждаются также железо, уран (VI) и хром. [c.196]

    Для определения урана в присутствии Ре, Сг, N1, РЬ и В1 исследуемый раствор, содержащий сульфат уранила и сульфат железа (и Ре=1 25), восстанавливают жидкой амальгамой цинка в растворе Н2504. Затем добавляют Ю мг ортофенантролина (он связывает Ре " в прочный комплекс) и комплексон III (25— 100 г) для связывания РЬ, N1, В1 и Сг, а затем титруют метавана-датом при концентрации Н2504, равной 0,1 N. В присутствии железа средняя ошибка титрования урана составляет 3—6% (отн.). [c.213]

    V Предпринимались попытки проводить титрование неводными растворами солей хрома (II) в среде неводных растворителей. Например, потенциометрическое титрование раствором Сг(СНзС00)2 в диоксапе применяли [4, 5] для определения солей уранила, железа [c.168]

    Другие авторы также используют железо (И) в качестве индикатора, но вводят только Fe2+, комплексонат которого, образующийся после конечной точки титрования тория, хдрошо окисляется на платиновом электроде при +0,4 в (это титрование выполняется с одним индикаторным электродом и Нас. КЭ). Титруют на фоне ацетатного буфера (pH 4,5). Этот метод применим, конечно, не только для определения тория, но и для определения многих других элементов, комплексонаты которых имеют р/С>17. Определению тория в описанных условиях не мешают уран (VI) и цирконий. [c.321]

    Объемному определению каждого из элементов после восстановления в редукторе, само собой разумеется, мешают все прочие восстанавливающиеся наряду с ним элементы, а именно железо, титан, европий, хром, молибден, ванадий, уран, ниобий, вольфрам и рений. Помимо того, следует упомянуть азотную кислоту, органические вещества, олово, мышьяк, сурьму и политионаты. Наиболее часто приходится сталкиваться с азотной кислотой, которая восстанавливается до гидроксил-амина и других соединений, на которые при титровании расходуется окислитель. Например, при определении железа в белой глине можно получить неверные результаты вследствие содержания нитрата аммония в осадке от аммиака, даже тщательно промытом. Для полного удаления азотной кислоты обычно требуется двукратное, даже лучше трехкратное, выпаривание раствора с серной кислотой до появления ее паров, причем стенки сосуда необходимо каждый аз тщательно обмывать. Иногда, как, например, в присутствии урана или при разрушении фильтровальной бумаги обработкой азотной и серной кислотами, азотная кислота удерживается настолько прочно, что для ее удаления двукратного выпаривания с серной кислотой недрстаточно. При разрушении фильтровальной бумаги можно избежать введения азотной кислоты, для чего к раствору, выпаренному в закрытом стакане до появления паров серной кислоты, прибавляют осторожно по каплям насыщенный раствор перманганата калия до появления неисчезающей розовой окраски, а затем продолжают нагревание в течение нескольких минут. [c.138]

    В обычном ходе анализа горных пород поведение урана в значительной мере зависит от наличия двуокиси углерода и ванадия. В их отсутствие уран количественно осаждается аммиаком если, не ввести поправку на его содержание, точность анализа будет зависеть от метода, применяемого для определения железа. Наибольшая ошибка получается при определении железа, если последнее проводится титрованием перман-i-anaTOM после восстановления цинком, который восстанавливает уран, частично даже ниже, чем до четырехвалентного состояния. Поскольку при титровании перманганатом эквивалент ГегОз меньше эквивалента UgOg, то рассчитанное по разности содержание алюминия также будет яе совсем точным (несколько повышенным). При восстановлении же железа сернистым ангидридом, сероводородом или хлоридом олова (И) ошибка получается только лишь в рассчитанном по разности содержании алюминия, так как уран этими реагентами не восстанавливается. [c.523]

    Весовой метод, согласно которому уран осаждают в виде урапат аммония (N114)211207 и взвешивают в виде закиси-окиси урана идОв, а также метод, основанный на восстановлении урана цинком и титровании перманганатом, двют достаточно точные результаты, если соблюдать, некоторые несложные предосторожности. При использовании этих методов для анализа сложных продуктов основная задача сводится к отделению мешающих элементов, как, например, ванадий и железо, которые и в том и в другом методе препятствуют определению урана. [c.526]

    Четырехвалентный уран] как восстановитель в потенциометрических титрованиях. I. Определение солей железа(1П) и, цepия(IV). [c.175]

    Согласно Милнеру и Фенна [77], цирконий можно очень хорошо определять обратным титрованием избытка комплексона хлоридом железа (П1). Так как некоторые элементы мешают этому определению, цирконий следует предварительно выделить. Авторам удалось осадить цирконий миндальной кислотой (по Куминсу [78]) из киачого раствора. Этот метод они применили для определения циркония в его сплавах с ураном. [c.492]

    Много органических реактивов было также снова исследовано при совместном их действии с комплексонами. Уже известное определение урана 8-оксихинолином (стр. 157) было успешно применено при анализе сплавов урана с висмутом [45]. В щелочном растворе в присутствии комплексона уран количественно выделяется оксином. Затем, подкисляя фильтрат, выделяют количественно висмут в виде оксихинолята. Весовое определение алюминия оксином в растворе комплексона, цианида калия и тартрата следует считать высоксселективным [46], поскольку оно позволяет определять алюминий в присутствии целого ряда элементов, в том числе и железа. Этот метод был использован для анализа сплавов алюминия с медью. Оксиновый метод определения вольфрама (стр. 159) был практически использован для анализа смеси вольфрама и тория [47]. В аликвотной части раствора определяют вольфрам осаждением оксихинолином с последующим йодометрическим титрованием. В другой части раствора можно определить торий прямым титрованием комплексоном при одновременном Маскировании вольфрама перекисью водорода. [c.540]

    Ванадий (V) можно титровать потенциометрически мягкими восстановителями в присутствии Сг", U ", Мо , W и Ti . Более сильными восстановителями можно титровать смесь двух ионов — ванадия (V) и Fe или U, Сг, Ti. Тиосульфат медленно взаимодействует с ванадием (V), однако скорость реакции можно увеличить введением меди (И) как катализатора [44]. Этот принцип использован [45] для потенциометрического титрования ванадия (V) в присутствии Fe, Мп, Сг, Мо и U. Уран (VI) молибден (VI) также взаимодействуют с тиосульфатом, но лишь после восстановления ванадия(V) и железа(III). Ионы Fe" титруются после ванадия (V), при этом наблюдается второй излом на кривой титрования. Определению ванадия не мешает Ю-кратный избыток железа (III). [c.252]

    Метод определения ионов железа косвенной кулонометрией так же как и классический титриметрический метод, основан на титровании Ре" электрогенерированными окислителями либо же Ре" соответствующими восстановителями. В качестве тит-рантов-окислителей для контроля содержания железа (И) в растворах гальванических ванн [526], смесях уран — железо, маг-незиовюстите [528, 529], растворах солей [527, 530], искусственных смесях [530, 532] рекомендованы марганец(П1), перманганат-ионы, церий(IV) и бром. Из титрантов-восстановителей для определения железа(III) в модельных растворах, искусственных смесях, латунях, сталях [473, 498, 533—535], ферритах [537, 538], дюрале [443, 484] нашли применение электрогенерированные TF", Си , V и Sn". [c.76]

    Длительность и трудоемкость гравиметрического определения фосфора послужили причиной многочисленных попыток разработать амперометрический метод его определения. Для этой цели рекомендовали соли свинца [1, 2] и железа [3, 4], однако эти методы не получили практического применения, по всей вероятности в связи с тем, что состав осадка недостаточно постоянен и сильно зависит от pH раствора. При титровании солями свинца, кроме того, мешают сульфаты и хлориды. Гипофосфит (анион фосфорноватой кислоты) осаждают в виде РЬгРгОе в водно-спиртовой среде (10— 25% спирта по объему). Этим же способом титровали фосфат-ион и при анализе фосфорно-никелевйх сплавов [5]. Метод титрования солями железа (П1) недавно был вновь применен для определения фосфат-ионов [6]. Титруют фосфаты также раствором ванадила [7], нитратом ртути (I) [8] и уранил-ацетатом, образующим осадок состава KUO2PO4, отличающийся малой растворимостью постоянством состава [9—И]. [c.279]

    Кроме рассмотренных кислотно-основных, феррометрических, иодиметрических и аргентометрических методов для точного кулонометрического анализа веществ использовали, прежде всего в радиационной химии, титрование некоторыми другими реагентами, при применении которых достигалась 100%-ная эффективность. Для определения урана была применена кулонометрическая периметрия. Уран(VI) восстанавливали титаном (III), избыток которого окисляли азотной кислотой в присутствии сульфаминовой кислоты. Полученный уран(IV) окисляли железом (III) и полученное эквивалентное количество железа(II) титровали электролитически полученным церием (IV). Кулонометрическое образование церия (IV), однако, не протекает стехиометрически на аноде из золота в интервале плотностей тока 3,36—6 мА/см выход по току составляет 99,9%, а при плотности тока 0,7 мА/см даже 99,66%. Тем не менее при определении урана была достигнута при плотности тока 5 мА/см 100%-ная эффективность титрования, так как примерно 80% количества электричества, потребляемого при реакции, используется на электроокисление железа(II), протекающее со 100%-ным выходом. Стандартные отклонения при анализе образцов урана с содержанием 99,972% и 99,752% составляли 0,003—0,005%. [c.213]

    Этим способом кальций четко отделяется от ртути, свинца, висмута, меди, кадмия, мыщьяка, сурьмы, железа, хрома, алюминия, титана, урана, бериллия, молибдена, вольфрама, церия, тория, никеля, кобальта, марганца, цицка, магния и фосфат-ионов. (Бериллий и уран образуют комплексные растворимые соединения с оксалат-ионами, прибавленными в избытке.) Единственным элементом, мешающим определению, является олово (IV), которое выделяется в риде гидроокиси, однако осаждение гидроокиси олова (IV) мешает весовому определению кальция, но не объемному, титрованием осадка перманганатом. [c.652]


Смотреть страницы где упоминается термин Определение урана титрованием железом III : [c.519]    [c.506]    [c.475]    [c.519]    [c.164]    [c.59]    [c.164]    [c.478]   
Аналитическая химия урана (0) -- [ c.96 ]

Аналитическая химия урана (1962) -- [ c.96 ]




ПОИСК





Смотрите так же термины и статьи:

Уранил определение



© 2025 chem21.info Реклама на сайте