Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Глюкоза аэробное

    Катаболизм глюкозы. Аэробный и анаэробный гликолиз [c.131]

    ТЕМА 6.3. КАТАБОЛИЗМ глюкозы. АЭРОБНЫЙ И АНАЭРОБНЫЙ гликолиз [c.138]

    Чем отличается анаэробная ферментация от аэробного дыхания, если судить по свободной энергии, выделяемой в расчете на грамм глюкозы  [c.344]

    При аэробном или анаэробном метаболизме организмы получают энергию в процессе окисления подложки — сахара (глюкозы) или какого-либо другого материала (битума). Это окисление с выделением энергии происходит путем перехода протонов или электронов через ряд стадий, регулируемых ферментами, до появления конечного акцептора электронов. В аэробных процессах конечным акцептором электрона или иона водорода является кислород. В анаэробных процессах таким акцептором является окисленный материал типа нитрата или сульфата. Опыт показал, что аэробный метаболизм эффективнее анаэробного, так как для роста в аэробных процессах требуется меньше материала подложки, чем в анаэробных при одинаковом количественном росте бактерий. Причиной такого явления, известного как эффект Пастера, является большее выделение энергии в процессе аэробного метаболизма. [c.186]


    TAS в выражении ДС = АН - TAS был больше по абсолютной величине, чем член АН. AS = (ДС - ДН)/333. 18.48. ДС° равно нулю при ДЯ° - TAS = О, откуда следует, что это должно иметь место при температуре Т = = AH°/AS°. Для реакции 2(г.) -> 20 (г.) АН° = 495 кДж, AS° = 117 Дж/К. Следовательно, Г = 4230 К. Разумеется, полученное значение является лишь приближенной оценкой, в которой использованы значения АН и AS при 298 К последние вряд ли сохраняют такие значения при гораздо более высоких температурах. 18.50. Для аэробной реакции ДО = = -2875 к Дж, для анаэробной реакции ДО = = - 226 кДж. Константа равновесия первой реакции больше, она равна 3 Первая реакция позволяет получить больше энергии для выполнения работы, которая может быть израсходована на осуществление других, несамопроизвольных реакций, если они связаны с окислением глюкозы. [c.475]

    Брожение является также жизненно важным процессом и для человеческого организма. Хотя в обычных условиях наши мышцы получают вполне достаточные количества кислорода, чтобы произошло окисление пирувата и образование АТР аэробным путем, бывают обстоятельства, когда поступление кислорода оказывается недостаточным. Например, при крайнем напряжении сил, когда уже весь запас кислорода израсходован, мышечные клетки образуют лактат путем брожения. Более того, в белых мышцах рыб или домашней птицы аэробный метаболизм относительно невелик, и основным конечным продуктом оказывается L-лактат. В организме человека есть такие ткани, которые слабо снабжаются кровью, например хрусталик и роговица глаза. В клетках этих тканей окислительный метаболизм выражен слабо, а энергия в основном образуется при сбраживании глюкозы в лактат. [c.345]

    Сравним эффективность анаэробных и аэробных процессов распада глюкозы  [c.89]

    В качестве продуцента при производстве вакцин используют особые, адаптированные на специальных питательных средах культуры вирусов и бактерий. Работая с живыми вакцинами надо следить за тем, чтобы под воздействием мутагенных факторов культура не восстановила свою вирулентность или не потеряла свои антигенные свойства. Важно подобрать такую питательную среду, чтобы облегчить дальнейшую очистку препарата. В производстве вакцин широко используют среду, приготовленную из гидролизата казеина с добавками глюкозы, дрожжевого автолизата или кукурузного экстракта. При получении дифтерийного токсина или вакцин кишечных заболеваний, культивируя глубинным методом аэробные бактерии, используют обычные системы аэрации. При культивировании анаэробных бактерий, например возбудителя столбняка, для удаления кислорода из среды через нее пропускают инертный газ, например азот. [c.125]


    Аэробный путь прямого окисления глюкозы или, как его называют, пентозофосфатный путь (пентозный цикл). [c.319]

    В тканях (в том числе в печени) распад глюкозы происходит двумя основными путями анаэробным (при отсутствии кислорода) и аэробным, для осуществления которого необходим кислород. [c.327]

    В аэробных условиях гликолитический распад глюкозы до пировиноградной кислоты можно рассматривать как первую стадию окисления глюкозы до конечных продуктов этого процесса - СО, и Н,0. [c.328]

    Клетки, недостаточно снабжаемые кислородом, могут частично или полностью существовать за счет энергии гликолиза. Однако больщинство животных и растительных клеток в норме находится в аэробных условиях и свое органическое топливо окисляет полностью до СО, и Н,0. В этих условиях пируват, образовавщийся при расщеплении глюкозы, не восста- [c.343]

    Всего на 1 моль глюкозы в аэробных условиях... 38 АТФ [c.352]

    Снижение скорости потребления глюкозы и прекращение накопления лактата в присутствии кислорода носит название эффекта Пастера. Впервые это явление наблюдал Л. Пастер во время своих широко известных исследований роли брожения в производстве вина. В дальнейшем было показано, что эффект Пастера наблюдается также в животных и растительных тканях, где кислород тормозит анаэробный гликолиз. Значение эффекта Пастера, т.е. перехода в присутствии кислорода от анаэробного гликолиза или брожения к дыханию, состоит в переключении клетки на наиболее эффективный и экономичный путь получения энергии. В результате скорость потребления субстрата, например глюкозы, в присутствии кислорода снижается. Молекулярный механизм эффекта Пастера заключается, по-ви-димому, в конкуренции между системами дыхания и гликолиза (брожения) за АДФ, используемый для образования АТФ. Как известно, в аэробных условиях значительно эффективнее, чем в анаэробных, происходят удаление и АДФ, генерация АТФ, а также регенерирование НАД, окисленного из восстановленного НАДН. Иными словами, уменьшение в присутствии кислорода количества и АДФ и соответствующее увеличение количества АТФ ведут к подавлению анаэробного гликолиза. [c.353]

    По содержанию ионов К и Ка цереброспинальная жидкость практически не отличается от плазмы крови. Ионов Са в ней почти в 2 раза меньше, чем в плазме крови. Содержание ионов СГ заметно выше, а концентрация ионов бикарбоната несколько ниже в цереброспинальной жидкости, чем в плазме. Таким образом, минеральный состав цереброспинальной жидкости имеет характерные особенности и отличается от такового плазмы крови. Все это дает основание считать, что проникновение веществ через мембрану сосудистого эндотелия нервной системы — активный биохимический процесс. Источниками энергии для активного транспорта служат процесс аэробного окисления глюкозы и лишь в незначительной степени гликолиз. [c.644]

    После расщепления глюкозы до молочной кислоты большая часть оставшейся в ней энергии извлекается во второй фазе процесса — в окислении лактата до СОг и НгО кислородом воздуха. Первая фаза гликолиз — анаэробное (т.,е. протекающее без участия кислорода) превращение глюкозы, вторая фаза — аэробное превращение, т.е. собственно окисление. [c.104]

    Регуляция процессов активного транспорта, обеспечивающего поступление подавляющего большинства необходимых прокариотам веществ, происходит на уровне синтеза переносчика и его функционирования. Биосинтез белковых компонентов многих транспортных систем регулируется по типу индукции. Глюкоза, транспортная система которой у большинства прокариот конститутивна, подавляет образование транспортных систем других сахаров и ряда органических кислот путем катаболитной репрессии. Исключение составляют некоторые облигатно аэробные прокариоты, у которых транспорт органических кислот конститутивен, а индуцируемой является транспортная система глюкозы. Избыток субстрата в среде может репрессировать синтез соответствующей транспортной системы. Это особенно характерно для аминокислот. В этом случае регуляция транспорта координирована с регуляцией их последующего метаболизма. Обнаружена также регуляция транспорта по типу отрицательной обратной связи, когда субстрат, [c.124]

    Анаэробная ферментация (или гликолиз), цикл лимонной кислоты и дыхательная цепь присущи всему живому на Земле вьипе уровня бактерий. Некоторые аэробные, т.е. поглощающие кислород, бактерии тоже используют этот процесс для полного окисления глюкозы или аналогичного метаболита-в диоксид углерода и воду. Другие анаэробные, т.е. непотребляющие кислород, бактерии осуществляют только ферментацию поглощение глюкозы или других богатых энергией молекул, их разрыв на меньшие молекулы, такие, как пропионовая кислота, уксусная кислота или этанол, и использование сравнительно небольших количеств высвобождаемой сво- [c.333]


    Аэробные дегидрогеназы, для которых единственным акцептором водорода служит молекулярный кислород, называются оксида з а м и. Отнимая водород от окисляемого субстрата и передавая его кислороду воздуха, оксидазы могут образовывать воду или перекись кислорода. Из оксидаз важную роль играют полифенолокси-даза и глюкозооксидаза, окисляющие соответственно полифеноль-ные соединения (например, пирокатехин в хинон) и глюкозу в глюконовую кислоту. [c.117]

    Дисахариды, из которых спиртовые дрожжи усваивают мальтозу и сахарозу, предварительно подвергаются гидролизу соответствующими ферментами дрожжей до моносахаридов. При переходе дрожжей от анаэробных условий к аэробным ослабляется их способность сбраживать глюкозу и мальтозу, а сахаразная активность повышается в 2,5 раза. Дрожжи потребляют мальтозу только при отсутствии в среде фруктозы и глюкозы. Мальтоза сбраживается почти полностью в стационарную фазу роста дрожжей. [c.200]

    Схема химических превраще-И11Й при аэробном распаде глюкозы приведена ниже. [c.206]

    Таким образом, прп анаэробном потреблении глюкозы пз топлива, способного дать 2808 кДж/моль энергии, выделяется только 2166 кДж/моль. Позднее мы увидим, что энтальпия реакции не яв-лпстсп единственным критерием, который нсобхотимо рассматривать ири оценке эффективности использования ресурсов в процессе дыхания. Однако приведенный пример ясно показывает, что аэробное дыхание — горазю более усложненный процесс, чем более примитивная анаэробная ферментация. [c.127]

    ЗАКЛЮЧЕНИЕ. Если взять молекулу сахара глюкозы (С( Н120б) и подвергнуть ее биологическому окислению, четыре молекулы диоксида углерода образуются в цикле Кребса, а две — в процессе превращения пировиноградной кислоты в ацетилкофермент А. (Каждая молекула глюкозы дает две молекулы пировиноградной кислоты, см. рис. 18-1.) Однако только 10% всей энергии, которая выделяется при аэробном (т. е. требующем присутствия кислорода) расщеплении глюкозы, приходится на цикл Кребса остальная энергия образуется в дыхательной цепи, где в результате взаимодействия между НАД Н и О а получаются НАД и НаО. [c.191]

    Г.-простейшая форма биол. механизма аккумулирования энергии углеводов в АТФ. Считают, что он возник в период когда в атмосфере Земли пе было О2. При энергетически более выгодном аэробном окислении из одной молекулы глюкозы образуется 38 молекул АТФ. [c.580]

    Особенность биол. окисления в аэробных условиях состоит в том, что орг. субстрат обычно полностью окисляется до СОз и воды в циклич. последовательностях р-ций. Пример такого окисления-превращения в цикле трикарбоновых к-т ацетата, образующегося в виде АцКоА при окислит, расщеплении жирных к-т, углеводов и нек-рых аминокислот. Др. пример-полное окисление глюкозы в пентозофосфатном цикле. Циклич. пути благодаря полному окислению субстратов позволяют извлекать из орг. соед. максимум заключенной в них своб. энергии. [c.317]

    Аэробное дыхание - это процесс, обратный фотосинтезу, то есть синтезированное органическое вещество - глюкоза СбН120б разлагается с образованием углекислого газа и воды и при этом высвобождается потенциальная энергия Q , аккумулированная в этом веществе  [c.13]

    Восстановление диоксиацетонфосфата в глицерофосфат происходит также в летательных мышцах насекомых по-видимому, оно представляет путь, альтернативный образованию в этих тканях молочной кислоты. Хотя превращение свободной глюкозы в глицерофосфат и пируват не дает в итоге прироста АТР, следует учесть, что в мышцах исходным материалом служит гликоген, который по сравнению со свободной глюкозой требует для затравочных реакций вдвое меньше АТР. Кроме того, дисмутация триозофосфата, приводящая к образованию глицерофосфата и пирувата, может обеспечить быструю наработку АТР при интенсивных сокращениях мощной летательной мышцы насекомого. Во время более медленной восстанпвительной фазы глицерофосфат, как полагают, снова окисляется, поступая в митохондрии этих в высокой степени аэробных клеток. Таким образом, транспортировка глицерофосфата в митохондрии служит средством доставки в митохондрии восстановительных эквивалентов, полученных от NADH. Возможно поэтому, что значение глицерофосфата для мышечного метаболизма связано в основном с его транспортной функцией, а не с участием в бысТ" ром образовании АТР. [c.349]

    Ретикулоциты (незрелые эритроциты) содержат митохондрии, способные как к аэробному, так и к анаэробному окислению глюкозы. В опыте, в котором эти клетки инкубировались в оксигенированном растворе Кребса — Рингера с 10 мМ глюкозы, добавление антимицина А приводило через 15 мин к изменениям концентрации метаболитов, указанным в таблице .  [c.518]

    Основной путь катаболизма углеводов включает в себя гликолиз моносахаридов - О-глюкозы и В-фруктозы, источниками которых в растениях служат сахароза и крахмал. Гликолизом называют расщепление молекулы гексозы на два Сз-фрагмента (схема 11.26). В итоге образуются две молекулы пировиноградной кислоты, а выделяющаяся энергия запасается в двух молекулах АТФ, синтез которых произошел в результате так называемого субстратного фосфорилирования молекул АДФ. Для регенерирования НАД, участвующего в гликолизе, молекулы его восстановленной формы должны отдать полученные от субстрата окисления электрон и протон. В роли их акцептора в обычных для растений аэробных условиях выступает молекулярный кислород. Выделяющаяся при переносе электронов от НАДН к О2 энергия также используется для фосфорилирования АДФ, которое называют окислительным фосфорилирова-нием. Это дает дополнительно еще 4 молекулы АТФ. [c.338]

    Промежуточное положение занимают факультативно анаэробные микроорганизмы, например спиртовые дрожжи, которые нормально растут в среде без особого воздушного аэрирования. Метанокисляющие бактерии, используемые для биосинтеза витамина В12, не переносят присутствия кислорода, поэтому в начале процесса ферментации через культуральную жидкость продувают СО2 для деаэрации и перемешивания. При производстве хлебопекарных и кормовых дрожжей среду интенсивно аэрируют, продувая за 1 мин через каждую единицу объема среды 1—2 ед. объема воздуха, причем последний должен быть тонко диспергирован в среде. В среднем можно считать, что в аэробных условиях при окислении глюкозы до СО2 на каждый грамм глюкозы нужен 1 г кислорода. [c.55]

    Ряд культур дрожжей, в том числе Sa haromy es, в условиях недостаточного обеспечения среды кислородом и при наличии углеводов получают энергию путем анаэробного расщепления сахаров (гликолиз) при этом образуется этанол. Как только в среде появляется кислород, клетки дрожжей сразу переключаются на энергетически более выгодный аэробный метаболизм (Пастеровский эффект) и способны метаболизировать не только глюкозу, но и накопившийся в среде этанол. Усваивать этанол дрожжи могут благодаря наличию в их клетках фермента алько-гольдегидрогеназы (рис. 41). [c.106]

    Процесс ферментации можно вести по методу как поверхностного, так и глубинного культивирования, используя концентрированные (до 35%) растворы глюкозы. При получении глюконовой кислоты источниками углерода могут быть мальтоза, манно-за, маннит сахароза, лактоза и фруктоза для этих целей не годятся. В аэробных условиях выход глюконовой кислоты от количества глюкозы составляет 90%- При работе с концентрированными раЬтворами глюкозы к среде добавляют соединения бора и мел. Небольшое количество бора задерживает осаждение глюко-ната кальция во время ферментации. [c.152]

    Гликолиз. Понятие гликолиз означает расщепление глюкозы. Первоначально этим термином обозначали только анаэробное брожение, завершающееся образованием молочной кислоты (лактата) или этанола и СО,. В настоящее время понятие гликолиз используется более широко для описания распада глюкозы, проходящего через образование глю-козо-6-фосфата, фруктозобисфосфата и пирувата как в отсутствие, так и в присутствии кислорода. В последнем случае употребляют термин аэробный гликолиз в отлгиие от анаэробного гликолиза , завершающегося образованием молочной кислоты (лактата). [c.319]

    Как отмечалось, одна молекула НАДН (3 молекулы АТФ) образуется при окислительном декарбоксилировании пирувата в ацетил-КоА. При расщеплении одной молекулы глюкозы образуется 2 молекулы пирувата, а при окислении их до 2 молекул ацетил-КоА и последующих 2 оборотов цикла трикарбоновых кислот синтезируется 30 молекул АТФ (следовательно, окисление молекулы пирувата до СО, и Н,0 дает 15 молекул АТФ). К этому количеству надо добавить 2 молекулы АТФ, образующиеся при аэробном гликолизе, и 6 молекул АТФ, синтезирующихся за счет окисления 2 молекул внемитохондриального НАДН, которые образуются при окислении 2 молекул глицеральдегид-З-фосфата в дегидрогеназной реакции гликолиза. Следовательно, при расщеплении в тканях одной молекулы глюкозы по уравнению gH ,Og + 60,—>6СО, + 6Н,0 синтезируется 38 молекул АТФ. Несомненно, что в энергетическом отнощении полное расщепление глюкозы является более эффективным процессом, чем анаэробный гликолиз. [c.349]

    Для реализации биосинтеза и метаболизма необходима энергия, запасаемая в клетках в химической форме, главным образом в экзергонических третьей и второй фосфатной связи АТФ. Соответственно метаболические биоэнергетические процессы имеют своим результатом зарядку аккумулятора — синтез АТФ из АДФ и неорганического фосфата. Это происходит в процессах дыхания и фотосинтеза. Современные организмы несут память об эволюции, начавшейся около 3,5 10 лет назад. Имеются веские основания считать, что жизнь на Земле возникла в отсутствие свободного кислорода (см. 17.2). Метаболические процессы, протекающие при участии кислорода (прежде всего окислительное фосфорилирование при дыхании), относительно немногочисленны и эволюционно являются более поздними, чем анаэробные процессы. В отсутствие кислорода невозможно полное сгорание (окисление) органических молекул пищевых веществ. Тем не менее, как это показывают свойства ныне существующих анаэробных клеток, и в них необходимая для жизни энергия получается в ходе окислительно-восстановительных процессов. В аэробных системах конечным акцептором (т. е. окислителем) водорода служит Ог, в анаэробных — другие вещества. Окисление без Oj реализуется в двух путях брожения — в гликолизе и в спиртовом брожении. Гликолиз состоит в многостадийном расщеплении гексоз (например, глюкозы) вплоть до двух молекул пирувата (пировиноградной кислоты), содержащих по три атома углерода. На этом, пути две молекулы НАД восстанавливаются до НАД.Н и две молекулы АДФ фосфоршгируются— получаются две молекулы АТФ. Вследствие обратной реакции [c.52]

    При аэробном дыхании, т. е. при полном превращении окисляемых веществ в углекислоту и воду, вся связанная энергия осво--бождается. Например, при использовании дрожжами глюкозы одна ее грамм-молекула, т. е. 180 г, выделяет 674 ккал тепла  [c.531]


Смотреть страницы где упоминается термин Глюкоза аэробное: [c.89]    [c.96]    [c.291]    [c.220]    [c.127]    [c.301]    [c.64]    [c.563]    [c.338]    [c.353]    [c.656]    [c.266]    [c.101]   
Биологическая химия Изд.3 (1998) -- [ c.327 ]




ПОИСК





Смотрите так же термины и статьи:

АЭРОБНОЕ ОКИСЛЕНИЕ ГЛЮКОЗЫ В ГОЛОВНОМ МОЗГЕ И МЕХАНИЗМЫ ЕГО РЕГУЛЯЦИИ

Взаимодействие между обменом глюкозы и липидным обменом липиды как аэробный источник энергии

Катаболизм глюкозы. Аэробный и анаэробный гликолиз

Окисление аэробное глюкозы

аэробные



© 2025 chem21.info Реклама на сайте