Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Выделение индивидуальных газов из смесей

    Таким образом, при давлении коксового газа около 3,5 ат концентрацию углеводородов Сз и С в газе удается повысить почти в 100 раз с 0,4 до 47% объемн. Даже копцеитрация фракции Са повышается с 2,4 до 17%, т. е. в 7 раз. Нередко требуется разделять на индивидуальные компопенты смесь углеиодородов, выделенную из коксовых газов с 80%-иым [c.180]

    Для выделения газообразных углеводородов применяют методы сжатие (компрессия) с охлаждением, абсорбционно-десорбционный и адсорбционно-десорбционный (см. ч. I, стр. 271). Жидкости чаще всего разделяют перегонкой и ректификацией. Очень часто в промышленности практикуется комбинирование двух или более перечисленных методов. Используя разнообразные методы разделения исходных материалов, а также наиболее современные процессы их переработки, получают важнейшие соединения, являющиеся непосредственным сырьем органического синтеза синтез-газ (смесь СО и На) насыщенные алифатические углеводороды (от метана до пентанов) индивидуальные моноолефины (от Сз и выше) и их смеси диолефины бутадиен, изопрен и др. ацетилен ароматические углеводороды бензол, толуол, ксилолы и пр. [c.183]


    Выделение углеводородов из нефти и их переработка. Смеси веществ (С12—С18), которые могут быть использованы в промышленности без разделения (например, в производстве синтетических моющих средств), получают методом ректификации (перегонки). Для выделения индивидуальных низших парафинов (Сз—С5) из попутных газов проводят ректификацию при повышенном давлении (0,9—1,8 МПа). Для выделения индивидуальных углеводородов широко используют также азеотропную перегонку. К перегоняемой смеси добавляют жидкость, изменяющую летучесть компонентов смеси, — азеотропный агент, образующий с одним из компонентов постояннокипящую, или азеотропную, смесь, имеющую минимальную температуру кипения. Так выделяют, например, бутадиен из смеси углеводородов С4, используя в качестве азеотропного агента аммиак. [c.135]

    Сырой бензол, представляющий собой смесь легких ароматических углеводородов (бензола, толуола, ксилола и др.), олефинов, ненасыщенных соединений с двумя двойными связями (циклопентадиена, стирола, тиофена и др.), а также других соединений (фенолов, пиридиновых оснований, сероуглерода и т. п.), извлекается из коксового газа путем промывки газа поглотительным маслом, с последующей отгонкой из насыщенного сырым бензолом масла и повторным использованием его для поглощения сырого бензола. Последний поступает на дальнейшую переработку (ректификацию и очистку) для выделения из него индивидуальных чистых продуктов чистого бензола, толуола, ксилола, сольвента, а в некоторых случаях и технического сероуглерода. Бензол получают также из продуктов пиролиза нефтяного сырья. [c.765]

    Описанные выше случаи взаимодействия между ионитами в смешанном слое и растворами электролитов основаны на сдвиге ионообменного равновесия, устанавливающегося на индивидуальных ионитах, за счет связывания продуктов реакции обмена в малодиссоциированное, труднорастворимое или разлагающееся с выделением газа вещество. Целевым назначением смеси ионообменных материалов в этих случаях была деионизация, т. е. удаление ионов из раствора. Деионизация водных и водно-органических жидкостей может проводиться в одних случаях с целью простого удаления ионных составляющих растворов, неблагоприятно влияющих на последующее применение исходных растворов, в других — как побочная стадия при растворении осадков и т. д. Однако практически важным представляется также случай (пока не исследованный в достаточной мере), когда смесь ионитов применяют для образования из противоионов таких соединений, которые непосредственно могут взаимодействовать с органическими или неорганическими компонентами раствора. В качестве примера такой смеси может служить смешанный слой, составленный из двух анионитов в бромид- и броматной форме. При взаимодействии ионитов с кислотным раствором органического соединения последнее может подвергаться мягкому бромированию за счет постепенного выделения брома по реакции [c.53]


    Общее состояние всего раствора в целом может быть охарактеризовано такими же параметрами состояния, как и состояние индивидуального вещества. Факторы интенсивности р, 7 и т. д. должны быть постоянными во всем объеме раствора. Факторы экстенсивности — и, 5 и т. д. в случае смеси идеальных газов складываются из величин объемов, энтропий и т. д., вносимых в смесь отдельными ее компонентами. Но каждый из экстенсивных факторов реального раствора ни коем случае не будет обязательно равен сумме соответствующих факторов отдельных компонентов, находящихся в чистом виде при той же температуре и том же давлении. Условия существования каждого компонента изменяются при его переходе из чистого состояния в раствор, и это приводит к отклонениям от аддитивности 5 и т. д. Молекулы компонентов раствора могут оказаться связанными сильнее или слабее, чем в чистом веществе. В первом случае освобождается некоторое количество энергии и раствор образуется с выделением теплоты. Во втором случае ослабление связей между молекулами сопряжено с поглощением энергии и образование раствора сопровождается поглощением теплоты. Таким образом, V, 8, Н и т. д. раствора являются сложными функциями количеств образующих его компонентов. [c.79]

    Нефть представляет собой сложную смесь жидких органических веществ, в которой растворены различные твердые углеводороды и смолистые вещества. Кроме того, часто в ней растворены и сопутствующие нефти газообразные углеводороды. Разделение сложных смесей на более простые или в пределе — на Индивидуальные компоненты называется фракционированием. Методы разделения базируются на различии физических, поверхностных и химических свойств разделяемых компонентов. При исследовании и переработке нефти и газа используются следующие методы разделения физическая стабилизация (дегазация), перегонка и ректификация, перегонка под вакуумом, азеотропная перегонка, молекулярная перегонка, адсорбция, хроматография, применение молекулярных сит, экстракция, кристаллизация из растворов, обработка как химическими реагентами, так и карбамидом (с целью выделения парафинов нормального строения) и некоторые другие методы. Всеми этими методами возможно получить различные фракции, по составу и свойствам резко отличающиеся от исходного продукта. Часто эти методы комбинируют. Так, например, адсорбция и экстракция при разделении смолистых веществ или экстракция и перегонка в процессе экстрактивной перегонки и т. п. При детальном исследовании химического состава нефти практически используются все перечисленные методы. [c.11]

    Если для отделения метана и водорода использовать абсорбционный метод, можно ограничиться более низкими давлениями и значительно более высокими температурами. Абсорбциоппый метод заключается в том, что газовую смесь приводят в соприкосновение с поглощающим маслом, движущимся противотоком к газу. Абсорбцию проводят под давлением в условиях, прп которых в масло растворяются углеводороды с двумя и больше атомами углерода, тогда как метан и водород не поглощаются и покидают установку в виде остаточного газа. После этого из поглощающего масла отгоняют углеводороды, которые затем разделяют ректификацией. Поскольку метан и водород удалены, эту ректификацию осуществить гораздо легче. После отпарки углеводородов поглощающее масло возвращают на абсорбционную установку. Газы можно отпаривать от масла и таким образом, чтобы одновременно происходило разделение углеводородов на фракции по числу атомов углерода это облегчает дальнейшее выделение индивидуальных углеводородов ректификацией. [c.149]

    Смесь газов, десорбирующаяся при нагревании поглощающего масла, состоит главным образозл из углеводородов С.з и С4. При необходимости ее можно подвергнуть дальнейшему разделению ректификацией под давлением. Наряду с грубым разделением, производимым с целью удаления углеводородов Ся и С4, требуется более четкое выделение индивидуальных продуктов, предназначаемых для химической переработки. [c.167]

    Газовая хроматография (ГХ) представляет собой метод разделения, в котором в качестве подвижной фазы используется газ. Компоненты образца, анализируемого этим методом, должны образовывать с подвижной фазой, так называемым газом-носителем, газовую смесь. С помощью газовой хроматографии можно анализировать вещества, парциальное давление которых при температуре хроматографической колонки составляет не меньше 1 мм рт. ст. Вещества должны быть химически устойчивыми и термостабильньши. В настоящее время газовая хроматография является одним из цаиболее распространенных аналитических методов. Этот метод нашел широкое применение в фармации и клинической биохимии. К достоинствам ГХ относится высокая разделительная способность, чувствительность и быстрота анализа. ГХ можно использовать и в препаративных целях для выделения индивидуальных веществ. [c.142]


    Выходяш,ие из хлоратора продукты реакции охлаждаются и последовательно проходят три колонны 4. В первой колонне хлористый водород поглош,ается водой. Во второй колонне хлорме-таны нейтрализуются водным раствором NaOH и в третьей колонне осушаются серной кислотой. Далее паро-газовая смесь компримируется до 10 ат, затем охлаждается в аппарате 7 до —40 С. Сконденсировавшиеся хлорметаны направляются на ректификацию для выделения индивидуальных продуктов, газы, содержащ,ие непрореагировавший метан и некоторые количества хлористого метила, возвраш,ают на хлорирование. Выход продуктов—85%, В промышленности органического синтеза хлористый метил (темп. кип. —23,7 °С, темп. пл. —97,6 °С, плотность при температуре кипения 0,992 aj M ) используется для введения метильной группы в органические соединения  [c.178]

    Harris 131 считает, чтО адсорбент, применяемый для выделения индивидуальных олефинов, следует предварительно насытить паром или газом, обладающим сродством к адсорбенту, промежуточным по величине между сродством поглощаемых олефинов. Напр /[мер, про пилен можно отделить от этилена, если смесь этих двух газов пропустить над активированным углем, насыщенным водяным паром. [c.162]

    В последнее время широкое применение в газовой хроматографии нашли методы-спутники [30]. Поэтому, на наш взгляд, наиболее достоверные данные при идентификации реакционноспособных и нестабильных соединений могут быть получены при препаративном выделении индивидуальных неизвестных соединений с последующей расшифровкой путем снятия ИК-спект-ров, масс-спектров и т. д. Наиболее удобным, чувствительным и надежным методом идентификации реакционноспособных соединений оказалось сочетание газожидкостной хроматографии и масс-спектрометрии. В работе [31 ] показана возможность качественного определения борогидридов В а—Вщ методом газо-жидкостной хроматографии в сочетании с масс-спектрометрией. Смесь триалкилборанов с бороводородами идентифицировали после газохроматографического разделения с помощью ИКС, раман-спектроскопии и масс-спектро-метрии. Но в связи с тем, что для первых двух методов требуются значительные количества вещества, а в газовой хроматографии имеют дело с пробами 1—10 мкл, то целесообразнее оказалось использовать масс-спектро-метрию. Сочетание газо-жидкостной хроматографии и масс-спектрометрии позволило определить качественный состав смеси [32]. Этим же методом идентифицированы летучие токсичные вещества (С1СН2)аО и (СН 3)2804 в воздухе после предварительного концентрирования анализируемых веществ из воздуха в ловушке длиной 10 см, заполненной 250 мг порапака, и дальнейшего исследования уловленных веществ [33]. Методом сочетания ГЖХ и масс-спектрометрии идентифицированы оло- [c.108]

    Каменноугольная высокотемпературная смола или каменноугольная смола) представляет собой смесь различных органических соединений, конденсирующихся при охлаждении коксового газа. Гларной составной частью каменноугольной смолы являются различные ароматические углеводороды и их производные соединения. В настоящее время в составе каменноугольной смолы идентифицировано > 300 индивидуальных соединений. Их выделение в чистом виде на практике чрезвычайно трудное депо, поэтому смолу разгоняют на отдельные фракции, выкипающие в относительно узких границах температур. В них и конденсируются соединения определенных классов. [c.228]

    До температуры 476—523 К испаряется влага и выделяются газы — оксид углерода (И) и оксид углерода (IV) при температуре около 573 К начинается выделение паров смолы и образуется пиро-генетическая вода, а уголь переходит в пластическое состояние при температуре 773—823 К разлагается пластическая масса угля с образованием первичных продуктов газа и смолы, состоящих из парафиновых, нафтеновых и ароматических углеводородов, и затвердевает масса с образованием полукокса. При температуре 963 К и выше происходит дальнейшее выделение летучих продуктов, которые подвергаются пиролизу, а из них в результате различных реакций образуются ароматические углеводороды (последние наиболее стойки в условиях коксования и накапливаются в смоле) одновременно происходит упрочнение кокса. Конечными продуктами будут как индивидуальные вещества (сероуглерод, бензол, толуол, ксилолы, аммиак, антрацен, нафталин, фенантрен, карба-еол, фенол и др.), так и смеси веществ (масла — нафталиновое, поглотительное и др. сольвент — смесь изомеров триметилбензола и ароматических углеводородов каменноугольный пек, обратный коксовый газ и др.). [c.84]

    Работа проводилась со смесью изоамиленов следующего состава З-метилбутен-1 14,5%, 2-метилбутен-1 25,5%, 2-метилбутен-2 60%, которую получали дегидратацией изоамилового спирта над окисью алюминия при 300°С. Некоторые опыты проводили с индивидуальными изомерами, выделенными на препаративных колонках радиохроматографа [114]. Опыты проводили следующим образом. Предварительно в газовой бюретке готовилась реакционная смесь изоамиленов с кислородом заданного состава. Несколько раз шприцем продували калиброванный объем исходной смесью и поворотом рукоятки переключали клапаны в положение, при котором газ-носитель направлялся в калиброванный объем, выдувая из него пробу в катарометр. [c.322]

    Следует отметить, что если в смеси углеводородов суммарная концентрация алканов, начиная с этана, относительно мала по сравнению с концентрацией метана (например в природных газах некоторых месторождений), то такую смесь технологически обоснованно подвергнуть высокотемпературной конверсии (без включения водяного пара в число исходных реагентов). Тогда, не принимая во внимание термодинамически возможное выделение свободного углерода, целесообразно предварительно проверить выведенные уравнения для определения состава конечного газа высокотемпературной конверсии индивидуальных алканов (табл. 3) с последующим использованием результатов проверки для высокотемпературной конверсии смеси углеводородов с прева.1ирующим содержанием метана. [c.42]


Смотреть страницы где упоминается термин Выделение индивидуальных газов из смесей: [c.43]    [c.73]    [c.16]    [c.193]    [c.83]   
Смотреть главы в:

Непрерывная адсорбция паров и газов -> Выделение индивидуальных газов из смесей




ПОИСК





Смотрите так же термины и статьи:

Выделение газа

Газы индивидуальные



© 2024 chem21.info Реклама на сайте