Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разобщители

    Закачка под давлением может быть реализована и без вязких сред, например, с помощью забойных разобщителей-пакеров. [c.17]

    Для придания черной углеводородной пленке. дальнейшего сходства с биологическими мембранами их модифицируют, т. е. подвергают воздействию различного рода физиологически активных веществ. Так, добавки некоторых разобщителей окислительного фосфорилирования и антибиотиков в водную среду или в раствор, из которого получают пленки, позволяют снизить сопротивление до физиологического диапазона [84, 93, 95, 97, 170]. Далее, обнаружены соединения, придающие черным пленкам свойство избирательной ионной проницаемости. [c.167]


    В первой серии экспериментов подбирают концентрацию разобщителя (ДНФ), вызывающую максимальную стимуляцию дыхания. Для этого промытые и подсушенные электроды полярографа погружают в кювету с 2 мл среды (см. выше), содержащую дополнительно 5 мМ сукцинат и 5 мкМ ротенон. Включают самописец и после установления постоянного по величине тока начинают реакцию добавлением мито- [c.465]

    Проводят аналогичную серию опытов с различными концентрациями белка митохондрий, добавляя вместо разобщителя 200 мкМ АДФ. После превращения всей добавленной АДФ в АТФ и выхода в контролируемое состояние пробы заканчивают (анаэробиоз) добавлением АДФ или ДНФ. Полученные результаты представляют в виде графической зависимости скорости разобщенного дыхания (+ДНФ), скорости дыхания в состоянии 3 ( + АДФ), скорости фосфорилирования, отношения АДФ/О и ДК от концентрации белка митохондрий в пробе. [c.466]

    ВЛИЯНИЕ РАЗОБЩИТЕЛЕЙ НА ПРОЦЕССЫ ТРАНСФОРМАЦИИ [c.469]

    Разобщители могут заменить X в этой реакции [c.402]

    На рисунке схематично изображены принципы, лежащие в основе хемиосмотической теории окислительного фосфорилирования. Р, и Ро - белковые субъединицы, ответственные за фосфорилирование. Основной поток протонов создается сопряжением окисления с транслокацией протонов, переносимых с внутренней на наружную сторону мембраны эта транслокация осуществляется комплексами дыхательной цепи I, 111 и IV, каждый из которых действует как протонная помпа. Разобщители, например, динитрофенол, вызывают утечку Н через мембрану, сильно снижая электрохимический протонный градиент. Олигомицин специфически блокирует поток протонов через Рц [c.88]

    Перенос электронов приводит к образованию трансмембранного протонного градиента, разрядка которого с помощью мембранной АТФ-синтазы сопровождается синтезом АТФ. Доказательством получения метанобразующими бактериями энергии в результате окислительного фосфорилирования служит подавление у них образования АТФ при действии разобщителей и ингибиторов АТФазы. Мало, однако, известно об электронных переносчиках. Не изучена организация дыхательной цепи и ее Н -переносящих участков. [c.430]

    Таким образом, 2,4-динитрофенол уничтожает электрохимический потенциал и синтез АТФ становится невозможным, хотя окисление субстратов при этом происходит. Энергия дыхательной цепи в подобном случае рассеивается в виде теплоты. Этим объясняется пироген-ное действие разобщителей. Разобщающее действие оказывают некоторые антибиотики, такие, как валиномицин и грамицидин. [c.177]


    Модификация черных пленок различными органическими веществами, добавляемыми как в водную, так и в органическую фазы, приводит к значительному повышению их проводимости. Так, небольшое понижение сопротивления черных пленок наблюдается при добавлении некоторых органических молекул с относительно высокой диэлектрической проницаемостью [75—77], ряда водорастворимых ПАВ [76, 78, 79], белков [76, 80—82]. Значительное понижение сопротивления черных пленок наблюдается при добавлении в водную среду разобщителей окислительного фосфорилиро-вания, таких, как Л4-нитрофенол, 2,4-динитрофенол, тетрахлор-трифторбензимидазол и др. [83—87], различных антибиотиков валиномицина, актинов, грамицидинов, циклических полиэфиров и др. [88—93]. В присутствии ряда антибиотиков черные пленки обладают ярко выраженной катионной специфичностью. [c.108]

    Высоконапорная обработка. Метод обработки под высоким давлением используют для воздействия на слабопроницаемые интервалы продуктивного горизонта. Для этого в ПЗП предварительно подают высоковязкую нефтекйслотную эмульсию, которая, следуя по пути наименьшего сопротивления в зоны высокой проницаемости, блокирует их. При этом гидродинамическое сопротивление ПЗП растет, что создает предпосылки для развития высокого давления и охвата воздействием слабопроницаемых пропластков. Высоконапорную обработку часто проводят и без применения вязких эмульсий, при помощи межпластовых разобщителей — пакеров. [c.40]

    В полярографическую кювету, содержащую 2 мл среды инкубации,, погружают электроды, вносят 50 мкл суспензии обработанных антимицином митохондрий, добавляют 5 мМ малат и 5 мМ глутамат и через 1—2 мин вносят 50 мкл густой (50—70 мг/мл) суспензии препарата Кейлина—Хартри. Внесение субмитохондриальных фрагментов практически не вызывает стимуляции поглощения кислорода. Реакцию инициируют добавлением 4 мкМ Qa (осуществляющего перенос элект ронов между митохондриями и субмитохондриальными фрагментами неспособными окислять малат). По ходу реакции добавляют 100 мкМ динитрофенол и регистрируют увеличение скорости поглощения кисло рода. В том случае, если стимуляция разобщителем не наблюдается рекомендуется вдвое понизить количество вносимого препарата Кей лина—Хартри и (или) уменьшить концентрацию вносимого Q i. Нов торяют измерение с другими гомологами убихинона Qi (3 мкМ) и Qe (3 мкМ). Убеждаются в полной чувствительности наблюдаемой убихинон-редуктазной активности (измеренной с различными гомологами убихинона) к ротенону. С этой целью в кювету по ходу реакции вносят 5 мкМ ротенон и наблюдают полное ингибирование реакции. [c.440]

    Проба содержит среду инкубации № 1 и 0,3 мл 0,6 М раствора NH4 NS. В течение 2 мин после добавления митохондрий регистрируют величину оптической плотности, затем в кювету с помощью микропипетки приливают 2,4-динитрофенол в конечной концентрации 15 мкМ и в течение 3 мин регистрируют оптическую плотность. В следующих пробах концентрацию разобщителя увеличивают (30, 60, 100 и 130 мкМ). Убеждаются в том, что падение оптической плотности увеличивается с увеличением концентрации 2,4-динитрофенола. Ставят аналогичные пробы с NH4NO3. [c.448]

    Выделяют митохондрии из печени крысы. В кювету рН-метра наливают 4,5 мл среды измерения активности (п. 2) и погружают отмытый рН-электрод. Через 2—3 мин в кювету вносят 20—50 мкл суспензии митохондрий (2—4 мг) белка. Убеждаются в том, что нативные митохондрии не катализируют реакцию гидролиза АТФ в отсутствие разобщителя. Через 1 мин после внесения митохондрий в кювету добавляют динитрофенол до конечной концентрации, равной 0,1 мМ. Внесение разобщителя приводит к снятию трансмембранного электрохимического потенциала ионов водорода и активации реакции гидролиза АТФ. Измерение повторяют, в кювету после добавления митохондрий вместо динитрофенола вносят детергент тритон Х-100 до конечной концентрации 0,1%- Наблюдают, как и в случае динитрофенола, стимуляцию реакции. Выбирают концентрацию тритона (в интервале от 0,02 до 2%) дегя проявления максимальной ферментативной активности. [c.460]

    Для определения концентрации образовавшегося малата в спектрофотометрическую кювету вносят 3 мл среды для измерения концентрации малата, добавляют 50 мкМ дихлорфенолиндофенол, 1 мМ феназинметосульфат, малатдегидрогеназу — 50 мкг/мл и аспартатамино-трансферазу — 50 мкг/мл. Определяют значение оптической плотности раствора при длине волны 600 нм, соответствующей максимуму поглощения окисленной формы ДХФИФ (емм ° =20). В кювету добавляют 50—100 мкл раствора малата и фиксируют уменьшение оптической плотности, связанное с восстановлением дихлорфенолиндофенола. Рекомендуется определить указанным методом концентрацию приготовленного по навеске раствора L-малата. Рассчитывают концентрацию образующегося в результате реакции окисления янтарной кислоты малата и определяют стехиометрическое соотношение окисленного сукцината к образованному малату в отсутствие и в присутствии разобщителя. [c.462]

    В работе предлагается сравнить действие разобщителей на процессы окислительного фосфорилирования и активного транспорта Са + в митохондриях печени крысы. Так как протекание обеих эндергонических реакций сопряжено с поглощением (синтез АТФ) или освобождением (транспорт Са +) стехпометрических количеств ионов Н+, следует воспользоваться установкой для непрерывной регистрации pH стеклянным Н+-чувствительньш электродом (с. 474). Изменения трансмембранного потенциала прослеживают по распределению К+ (в присутствии валиномицина в бескалиевой среде — с. 442) с помощью К+-чувствительного электрода или по абсорбции проникающих синтетических катионов (например, сафранин, оксанол и др.) с помощью двухволновой спектрофотометрии. [c.469]


    В первой части работы изучают влияние разобщителя на сукцинатоксидазную активность митохондрий. В кювету полярографа с 2 мл среды с 5 мкМ ротеноном после погружения в нее электродов и включения самописца добавляют 40—60 мкл суспензии митохондрий (4— 5 мг белка). Через 1—2 мин в кювету добавляют 5 мМ сукцинат и регистрируют дыхание митохондрий с постоянной скоростью на протяжении 1—2 мин. Добавляют 5 мкМ ДНФ и регистрируют дыхание до полного исчерпания кислорода в среде. В следующих пробах последовательно увеличивают концентрацию ДНФ до тех пор, пока дальнейшее увеличение ее не будет вызывать увеличения скорости дыхания. В прочносопряженных митохондриях насыщение сукцинатоксидазной активности обычно достигается в присутствии 50—100 мкМ ДНФ. Строят графическую зависимость скорости окисления сукцината в митохондриях от концентрации ДНФ (5—6 экспериментальных точек). [c.470]

    Для проведения следующей части работы на полярографе подбирают максимальную концентрацию Са +, добавление которого к митохондриям в среде с сукцинатом вызывает обратимую активацию дыхания. Для прочносопряженных митохондрий печени крысы (4—5 мг белка в пробе) это составляет около 200—400 мкМ Са +. Дальнейшие измерения проводят на регистрирующем рН-метре. В ячейку рН-метра со средой инкубации и погруженными электродами добавляют последовательно митохондрии, сукцинат и выбранную концентрацию Са +. Регистрируют быстрое освобождение ионов Н+ (закисление среды) из матрикса в ответ на добавление Са +. После аккумуляции всего добавленного Са + изменения pH среды прекратятся и на фоне нового стационарного значения pH в суспензии добавляют 1—2 раза одинаковое количество титрованной НС1 или КОН для калибровки шкалы (конечная концентрация НС1 или КОН в используемых условиях должна составлять около IO М). Проводят серию аналогичных проб, содержащих увеличивающиеся концентрации ДНФ, и каждый раз регистрируют скорость закисления среды в процессе активного транспорта Са2+. Для полного торможения транспорта Са + в митохондриях диапазон концентрации ДНФ должен быть значительно (в 2—3 раза) расширен по сравнению с опытами по измерению сукцинатоксидазной активности. Делают 5—6 измерений и строят графическую зависимость скорости транспорта Са + от концентрации разобщителя (5—6 экспериментальных точек). [c.470]

    НР04 -ЬН+ч АТФ --ЬН20. Готовят серию проб с увеличивающимися концентрациями разобщителя и убеждаются в постепенном (от пробы к пробе) снижении скорости окислительного фосфорилирования. В этом случае диапазон концентраций разобщителя будет совпадать с диапазоном, найденным ранее при титровании сукцинатоксидазной активности. Каждое измерение должно заканчиваться добавлением титрованной НС1 или КОН для калибровки шкалы. Строят графически зависимость скорости окислительного фосфорилирования от концентрации ДНФ. Анализируют результаты проведенных полярографических и рН-метрических измерений. [c.470]

    Изучить влияние накопленного в матриксе Са + на кинетику Гидролиза АТФ в митохондриях. Процесс гидролиза АТФ в митохондриях регистрируют рН-метрическим методом (с, 475). При проведении этого исследования следует иметь в виду, что процесс аккумуляции a + в митохондриях может протекать в отсутствие субстратов дыхательной цепи (а также в анаэробных условиях) за счет энергии, освобождающейся в процессе гидролиза АТФ. Кроме того, прочносопряженные митохондрии в таких условиях катализируют гидролиз АТФ с. очень низкой скоростью. В связи с этим в предварительных экспериментах измеряют зависимость скорости гидролиза АТФ в митохондриях от концентрации разобщителя (ДНФ). В дальнейшем измерения скорости гидролиза АТФ в предварительно нагруженных Са2+ митохондриях проводятся после добавления насыщающих концентраций ДНФ. Чтобы исключить возможность быстрого выхода a + из матрикса под действием ДНФ (проверяют в специальных опытах), добавлению разобщителя должна предшествовать обработка нагруженных Са + митохондрий 10 М рутениевым красным. Результаты исследования представляют в виде графической зависимости скорости ДНФ-ин-дуцируемого гидролиза АТФ от количества Са + в матриксе митохондрий. [c.478]

    Влияние разобщителей на процессы трансформации энергии в митохонд риях................. [c.509]

    Двигаясь через мембрану в электрич. поле в ионизованной форме, разобщитель уменьшает АЧ" возвращаясь обратно в протонир. состоянии, разобщитель понижает ДрН ис. 4). Т. обр., такой челночный тип действия разобщителя приводит к уменьшению ЛДН" . [c.340]

    Разобщители окислительного фосфорилирования 3/668-671. См. также Ионофюры Разрешающая способность приборов 1/686 2/296, 347 5/869, 873 [c.696]

    Доказательством верности теории Митчелла является то, что существование мембранного потенциала в митохондриях стало бесспорньгм, а также то, что ионофоры (валиномицин, грамицидин, динитрофенол) создают условия для свободного перемещения ионов Н , в результате исчезает протонный градиент, и синтез АТФ прекращается. Вещества, нарушающие градиент Н , называют разобщителями окислительного фосфорилирования. Количество АТФ, синтезируемое в процессе распада углеводов Поскольку окисление одной молекулы НАДН сопровождается синтезом трех молекул АТФ, а всего в ходе гликолиза, пируватдегидрогеназной реакции и реакций ЦТК образуется десять НАДН, то всего генерируется 30 молекул АТФ, а за счет окисления двух молекул ФАДН2 образуется еще четыре молекулы АТФ, т.е. всего 34 молекулы АТФ. К этому числу следует добавить две молекулы АТФ, синтезировавшихся в гликолизе, и две молекулы ГТФ, появившихся в ЦТК за счет субстратного фосфорилирования. [c.89]

    Эффекгивность окислительного фосфорилирования в митохондриях определяется как отношение величины образовавшегося АТФ к поглощенному кислороду АТФ/О или Р/О (коэффициент фосфорилирования). Экспериментально определяемые значения Р/О, как правило, оказываются меньше 3. Это свидетельствует о том, что процесс дыхания не полностью сопряжен с фосфорилированием. Действительно, окислительное фосфорилирование в отличие от субстратного не является процессом, в котором окисление жестко сопряжено с образованием макроэргов. Степень сопряжения зависит главным образом от целостности митохондриальной мембраны, сберегающей разность потенциалов, создаваемую транспортом электронов. По этой причине соединения, обеспечивающие протонную проводимость (как 2,4-ди-нитрофенол), являются разобщителями. [c.313]

    Фазово-контрастная микроскопия показывает, что митохондрии живых клеток испытывают изменения размеров и формы, связанные с дыханием. Происходят циклы набухания и сокращения двух типов. Обратимый цикл малой амплитуды, в котором объем меняется на 1—2%, наблюдается у всех видов митохондрий in vitro. Набухание происходит в отсутствие АДФ в состоянии покоя. При добавлении АДФ происходит сокращение и окислительное фосфорилирование АДФ. Цикл блокируется разобщителями окислительного фосфорилирования. [c.431]

    В работах школы Ленинджера было показано непосредственное участие транспорта катионов в функционировании мембран митохондрий. Накопление больших количеств Са " ", поступающего из окружающей среды, происходит при дыхании и блокируется его ингибиторами и разобщителями окислительного фосфорилирования. Поступление Са " " связано с количеством поглощае-дгого кислорода, фосфат также аккумулируется параллельно накоплению Са " " в отношении Са " " Ф = 1,67 (соответствующем оксиапатиту). Электронная микроскопия показывает, что в митохондриях могут накапливаться гранулы фосфата кальция. [c.431]

    Теория Митчелла получила ряд качественных подтверждений. Либерман и его сотрудники изучили транспорт ионов через искусственные фосфолипидные мембраны. В присутствии синтетических ионов, с зарядом, экранированным гидрофобными заместителями, например тетрабутиламмония N [(СПг)зСПз] 4 или тетрафенилбората В (СвП5)4, существенно повышается электропроводность системы. Эти ионы быстро диффундируют сквозь мембраны. Был изучен транспорт этих ионов через митохондриальные мембраны (ММ) и субмитохондриальные частицы (СМЧ), полученные путем обработки митохондрий ультразвуком. ММ и СМЧ оказываются ориентированными противоположным образом. Цитохром с локализован на внешней стороне ММ и на внутренней стороне мембраны СМЧ. Можно думать, что внутри-митохондриальное пространство заряжено отрицательно, а внутреннее пространство СМЧ — положительно. Энергизация СМЧ добавкой АТФ вызывает поглощение синтетических анионов, а деэнергизация ингибитором дыхания (актиномицином) или разобщителем окислительного фосфорилирования (производное фенилгидразона) вызывает выход анионов. Транспорт электронов в мембранах СМЧ сопровождается поглощением синтетических анионов. В свою очередь их транспорт нарушается ингибиторами электронного транспорта и разобщителями окислительного фосфорилирования. [c.436]

    Снижение А1 з должно приводить к нарушению сопряя5ения окисления и фосфорилирования. К этому сводится действие разобщителей сопряжения. Таковыми являются динитрофенол (ДНФ) и другие вещества. ДНФ, по-видимому, действует как переносчик протонов. Если схема Митчелла верна, то любые слабые кислоты и основания должны оказывать разобщающее действие. Разобщители действительно повышают протонную проводимость ММ. Выяв.чено далеко идущее сходство искусственных фосфолипидных мембран с внутренними мембранами митохондрий. [c.437]

    Бел. крист, порошок. гидрата 93 94 безводн. 117. рК 4,96. Раств-сть р. ЕЮН, эф. м.р. HjO, бенз. Ингибирует выделение О при фотосинтезе (при 10 М на 50%), вероятно, путем образования хелатов с Zn или Мп при 10 М ингибирует некоторые Ре-ферменты ингибирует глутаматдегидро-геназу. При 0,5 мМ ингибирует уби-хинол-цитохром б -редуктазу только на 28% разобщители не оказывают влияния на ингибирование [ARB 46, 452 [c.259]

    Аксоплазма представляет собой гелеподобную массу, что делает невозможной обычную диффузию макромолекул с вышеуказанными скоростями. Еще один довод против пассивного транспорта заключается в том, что разобщители окислительного фосфорилирования блокируют транспорт. 2,4-Динитрофенол, цианиды и азиды ингибируют его так же, как фторид ингибирует гликолиз. Для транспорта необходимы кислород и АТР. Быстрый аксональный транспорт не связан с телом клетки и наблюдается в изолированных аксонах в растворе Рингера, а также в бессолевых растворах сахарозы. Электровозбудимость и блокирование потенциалов действия тетродотоксином не влияют на [c.307]

    Экспериментально определяемые значения коэффициента Р/0, как правило, несколько ниже теоретически рассчитанных. Следовательно, процесс дыхания не всегда является процессом, жестко сопряженным с фосфорилированием. Нарушают систему сопряжения процессов окисления в дыхательной цепи и фосфорилирования так называемые разобщающие агенты (разобщители). К ним относятся вещества, подавляющие синтез АТФ (фосфорилирование), в то время как окисление субстратов, потребление кислорода (дьгхание) продолжаются. В качестве разобщителей в экспериментальной биохимии используют 2,4-динитрофенол, динитрокрезол, пентахлорфенол и др. В присутствии разобщителей коэффициент Р/0 равен нулю, а энергия окисления в этом случае трансформируется в тепловую форму. Следовательно, разобщители обладают пирогенным действием, т. е. повышают температуру тела. Большинство разобщающих агентов являются липофильными и их ингибирующее действие на процесс фосфорилирования легко объяснимо благодаря способности этих соединений обеспечить протонную проводимость сопрягающей мембраны митохондрий и тем самым препятствовать образованию электрохимического потенциала, а следовательно, и синтезу АТФ (15.3.5). [c.201]

    В растениях бутидазол ингибирует процесс переноса электронов в двух точках транспортной цепи, из которых первая расположена в восстанавливающей стороне фотосинтетического аппарата, а вторая — в окисляющей стороне системы. Бутидазол не действует как разобщитель фосфорилирования или ингибитор переноса энергии [56]. [c.616]

    Производные группы 2-ТФБ являются сильными ингибиторами и разобщителями окислительного фосфорилирования [6]. Исходя из этого можно объяснить механизм их действия. Однако фунгицидная активность не подтверждается симбатностью между био-цидным действием и ингибированием митахондрий изолированных тканей. Так, ТТФБ является мощным ингибитором окислительного, фосфорилирования, в то же время у него отсутствует фунгицид-ность. 5-Хлор-ТФБ менее слабый ингибитор, но активный фунгицид [6]. Вероятно, кроме прямого эффекта, важное значение имеет возможное проникновение и накопление препарата в месте действия, что является оптимальным для 5-хлор ТФБ. [c.31]

    Изучение механизма действия ацилнафтолов показало, что они являются сильными разобщителями окислительного фосфорилирования. Механизм фунгицидного действия ацилнафтолов обусловлен их деэтерификацией до соответствующих нафтолов с последующим нарушением энергетических процессов, протекающих в митохондриях грибов fl6]. [c.139]

    Биосинтетические реакции пренилирования, столь характерные для ксантонов и кумаринов, протекают также в ряду флавонов. Например, химическую природу пренилфлавона имеет выделенный из почек платана платане-тин 3.385. Он примечателен тем, что является наиболее сильным из известных разобщителей окислительного фосфорилирования  [c.373]

    Ингибировать образование АТФ можно, не нарушая процесса транспорта электронов. Это достигается добавлением химических вепцеств, названных разобщителями. После удаления разобщителей синтез АТФ восстанавливается. [c.177]

    Различие в токсичности связано с изменением концентрации мест связывания токсина рецепторами мембран, имеется несколько типов участков связывания, что может влиять на степень резистентности насекомого. Происходят последовательные патологические изменения отделение клеток кишечника от мембраны, увеличение секреторной активности эпителиальных клеток кишечника, проницаемости для ионов натрия, увеличение концентрации в гемолимфе ионов калия, паралич кишечника и общий паралич. Исследован процесс переноса эндотоксина из кишечника в гемоцель, его влияние на мембраны везикул. Эндотоксин действует как разобщитель процессов окислительного фосфорилирования и дыхания, нарушает метоболизм в кишечных тканях, транспорт ионов через мембрану. [c.393]


Смотреть страницы где упоминается термин Разобщители: [c.463]    [c.466]    [c.472]    [c.339]    [c.403]    [c.432]    [c.437]    [c.255]    [c.181]   
Биофизика (1988) -- [ c.431 , c.432 , c.436 ]

Теоретические основы биотехнологии (2003) -- [ c.177 ]

Биоэнергетика и линейная термодинамика необратимых процессов (1986) -- [ c.311 , c.315 , c.316 , c.332 ]

Биоэнергетика Введение в хемиосмотическую теорию (1985) -- [ c.0 ]

Биохимия Т.3 Изд.2 (1985) -- [ c.87 ]




ПОИСК







© 2025 chem21.info Реклама на сайте