Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поток экспериментальное исследование

    Результаты теоретических и экспериментальных исследований подобного рода течений воды (плотины и дамбы) и нефти (пласты) в грунтах обобщены в монографиях [22]. Успешно проанализированы многие практически важные задачи о распределении давления и потоков, когда масштабы течения столь велики по сравнению с размерами зерен, что весь зернистый слой можно считать квазиоднородной средой с одной обобщен- ной характеристикой — проницаемостью. Структура же потока и поле скоростей в промежутках между зернами изучены слабо. Поэтому приходится в основном базироваться на различных, весьма идеализированных моделях этой структуры, рассчитывать на основании введенной модели. проницаемость слоя и. сопоставляя с экспериментом, вводить определенные поправки и [c.33]


    Уравнения гидродинамики реальных потоков обычно очень сложны (например, уравнения Навье-Стокса для однофазных потоков) или даже вообще не могут быть записаны в общем виде (например, для двухфазных потоков типа газ—жидкость ) из-за отсутствия возможности задания граничных условий на нестационарной поверхности раздела фаз. Поэтому на практике прн составлении математических описаний обычно используют приближенные представления о внутренней структуре потоков. С одной стороны, это облегчает постановку граничных условий для уравнений, а с другой— позволяет наметить определенные экспериментальные исследования, необходимые для нахождения параметров уравнений движения потоков. [c.56]

    При обработке результатов экспериментального исследования используем известные нз опыта массовую производительность G и статическое давление р . При наличии закрутки потока из-за влияния центробежных сил давление на периферийной поверхности ВРА (роп) будет больше, чем на корневой (рок)- Поэтому оба их необходимо измерять, а статическое давление р находить в результате осреднения. В диапазоне углов 0, = 60° приемлемые результаты дает осреднение по формуле [c.86]

    Как видно, имея зависимость (3.18), можно в рамках сделанных допущений определить значения углов бц и 9], а также другие параметры потока в этих сечениях, не имея данных о характеристике ВРА. Это позволяет намного сократить объем специальных экспериментальных исследований и ограничиться изме- [c.92]

    Обработка результатов экспериментального исследования, если известны только статические давления р , р , проводится по существу так же, как Для лопаточного диффузора. Чтобы замкнуть систему уравнений, необходимо знать угол потока сс при выходе из ОНА. По опытным данным, бав = 3- 7° [14, 43], однако, не делая большой погрешности, можно принять а, = 90 ", так как, даже если взять наибольший угол отставания 7°, синус угла = 83° будет отличаться от единицы всего на 0,7 %. [c.100]

    Для описания процесса в промышленном реакторе с движущимся слоем катализатора введены следующие допущения 1) потоки сырья и катализатора движутся каждый без существенного смешения и близки к потоку идеального вытеснения 2) крекирующая активность катализатора в реакторе существенно не меняется и близка к средней активности равновесного катализатора. Эти допущения обоснованы экспериментальными исследованиями и позволяют получить достаточно точное описание промышленного аппарата. [c.140]


    Коэффициент трения определяют на основании экспериментальных исследований с помощью метода анализа размерностей. Например, для условий, существующих в промышленных реакторах, при 5000 < Re < 200 ООО (турбулентный поток) [c.67]

    Все это свидетельствует о важности изучения аэрогидродинамики технологических аппаратов и сооружений с точки зрения обеспечения как равномерного, так и заданного неравномерного распределения потока для достижения максимальной эффективности их работы. При решении этих задач автором проведены теоретические и широкие экспериментальные исследования. Результаты этих исследований положены в основу данной монографии частично они были опубликованы ранее в периодической печати и книге Аэродинамика промышленных аппаратов . [c.3]

    Результаты экспериментальных исследований [171, 177 I, приведенные на рис. 5.4, показывают, что при решетке, установленной даже под углом О = 45°, теоретическая зависимость, построенная на предположении о малости отклонений характеристик потока и решетки, вполне удовлетворительно согласуется с опытными данными. [c.129]

    Зависимость степени выравнивания потока от некоторых из перечисленных параметров была выявлена теоретически. Экспериментальные исследования были направлены на широкую проверку этих теоретических зависимостей, а также общих принципов выравнивающего действия решеток и изучения влияния на степень выравнивания потока тех факторов и параметров, в отношении которых это влияние не могло быть теоретически установлено. [c.154]

    Сопоставляя результаты экспериментальных исследований модели аппарата круглого сечения с боковым входом потока при установленной уголковой решетке (рис. 8.3, а) с полями скоростей, приведенными на рис. 8.1, а, убеждаемся в достаточно высокой эффективности этой решетки [c.204]

    Влияние примесей на распространение свободной струи. Экспериментальным исследованием распределения концентрации пыли в свободной струе и влияния концентрации взвешенных в ней частиц на поле скоростей такой струи [83] было показано, что при не очень больших концентрациях (и < 1,1 кг/кг) и размерах взвешенных в потоке твердых частиц (50 мкм) характер поля скоростей одинаковый для незапыленного (х =0) и запыленного потоков. [c.314]

    Неравенство (6.9) связывает относительное увеличение гидравлического сопротивления с относительным увеличением теплоотдачи при различных свойствах потоков в гладкой поверхности. Допустим, при экспериментальном исследовании шероховатой поверхности найдены значения Затем рассчитывают коэффициенты Л,г, Дгг для гладкой поверхности и правую часть неравенства [c.91]

    Следующей по основному потоку движения информации является измерительная система. Измеряемыми величинами в экспериментальных исследованиях обычно являются физико-химические данные (концентрация, температура, давление, вязкость и т. д.). Первоначальными источниками информации о значениях измеряемых величин служат датчики. Они чаще всего выдают сигнал в аналоговой форме (непрерывный во времени). Если сигнал от датчика не является электрическим, то его стараются преобразовать в электрический (токовый или потенциальный), если он слабый, то усиливают. [c.55]

    С одной стороны, это облегчает постановку граничных условий для уравнений, а с другой — позволяет наметить определенные экспериментальные исследования, необходимые для нахождения параметров уравнения движения потоков. [c.171]

    Приведенная на рис. 3.7 структурная схема математической модели массопередачи явилась результатом анализа большой серии экспериментальных исследований на тарелках разных конструкций и диаметров. Эти исследования подтвердили наличие зон с разной степенью перемешивания, рециркулирующих потоков у боковых стенок аппарата, движущихся в строго определенном направлении. Наличие в модели всех элементов, определяющих неравномерности в структуре потока жидкости, и строгое их местоположение на тарелке позволяют осуществлять целенаправленное конструирование всех типов тарелок (сит- [c.129]

    Основными этапами реализации приведенных выше методов исследования структуры потоков являются экспериментальные работы по выявлению гидродинамической обстановки на барботажных тарелках и поиск оптимальных конструктивных решений. В процессе экспериментальных исследований используют индикаторные методы, применение которых связано со значительными затратами времени на сам эксперимент и обработку информации вручную, что снижает точность и достоверность получаемой информации. Это обусловило создание авторами издания стенда автоматизированного экспериментирования (САЭ). [c.161]

    Автор стремился изложить основные вопросы расчета в соответствии с результатами исследований последнего времени, обратив особое внимание на необходимость учета пространственного характера потоков. Экспериментальный материал книги базируется в основном на результатах исследований, проводившихся под руководством автора в ЦКТИ, а также на результатах работ других организаций. Используя экспериментальные результаты, автор критически подходил к оценке влияния того или иного конструктивного параметра, помня, что определяющими являются не конструктивные параметры сами по себе, а обусловливаемые ими соотношения аэродинамических величин, которые в разных случаях могут быть различными в зависимости от ряда дополнительных факторов. [c.4]


    Из сказанного вытекает, что приведенные выше уравнения требуют экспериментальной проверки и уточнения. Необходимы экспериментальные исследования двух типов а) изучение относительного движения с помощью приборов, вращающихся вместе с колесом, для получения более достоверных данных о явлениях внутри колеса и об оптимальных формах каналов б) исследование параметров в абсолютном движении (с помощью неподвижных приборов) с целью изучения потока за колесом и в переходной зоне между колесом и следующими за ним неподвижными элементами ступени. [c.58]

    Ш к а р б у л ь . H. Экспериментальное исследование структуры потока в рабочем колесе центробежного компрессора с различными профилями лопаток. М.—Л.. Машгиз, 1962. (Труды ЛПИ, № 221). [c.337]

    Тройная аналогия между переносом количества движения (импульса), тепла и вещества. Теоретическим анализом и многочисленными экспериментальными исследованиями установлено, что между механизмами переноса механической энергии, тепла и массы в определенных условиях существует приближенная аналогия. Известно, например, что в ядре турбулентного потока вследствие интенсивного перемешивания частиц происходит выравнивание их скоростей, а в процессах тепло- и массопереноса — выравнивание соответственно температур и концентраций. В пределах же пограничного слоя наблюдается резкое падение скоростей, температур и концентраций вследствие пренебрежимо малого действия турбулентных пульсаций. [c.152]

    За последние 15 лет советскими и зарубежными учеными выполнены обширные теоретические и экспериментальные исследования в области трения, тепло- и массообмена при вдуве газа в пограничный слой или при отсасывании его через пористую стенку. Между этими процессами и процессами тепло- и массообмена при конденсации пара из парогазовой смеси существует аналогия, основанная на том, что их интенсивность зависит как от условий обтекания внешним потоком поверхности обмена, так и от плотности поперечного потока вещества. [c.160]

    Условия процесса могут быть постоянными по всему сечению реактора только при хорошем поперечном перемешивании реагирующей смеси. Последнее обычно описывается эффективным коэффициентом поперечной диффузии Е . В неподвижном слое поперечное перемешивание вызывается разделением и слиянием потоков при обтекании твердых частиц. Анализ этого процесса с помощью метода случайных блужданий приводит к значению радиального числа Пекле Ре = vdJE , равному — 8. В многочисленных экспериментальных исследованиях в неподвижных слоях без химических реакций были найдены числа Пекле от 8 до 15 причем при Ке > 10 число Пекле не зависит от числа Рейнольдса. Это подтверждает предположение о том, что поперечное перемешивание является чисто гидродинамическим эффектом. Числа Пекле для переноса тепла те же, что и для переноса вещества, а это говорит о пренебрежимо малой роли твердых частиц в процессе поперечной теплопроводности. С уменьшением числа Рейнольдса ниже 10 число Пекле сначала возрастает, но затем начинает уменьшаться, так как при [c.263]

    При экспериментальном исследовании сопротивления шара или частицы иной формы надо учитывать осложняющие факторы. Если частица обдувается в аэродинамической трубе, то обтекание может нарушаться держателем, который закрепляет ее в определенном положении. Кроме того, существенна и степень начальной турбулентности обдувающего потока. Так, при больших значениях критерия Re, рассчитанного на диаметр частицы, сильно турбулентный внешний поток может разрушить турбулентный след, образующийся за частицей, и изменить закон ее сопротивления. Незакрепленные и взвешенные в потоке частицы могут вращаться, изменять свою ориентацию по потоку и совершать сложное непрямолинейное движение. Подробный обзор исследований, посвященных влиянию турбулентности набегающего потока, вращения, шероховатости и формы частиц и других факторов на сопротивление, приведен в серии статей Торобина и Говэна [12]. [c.28]

    Мандрыка Е. А. Экспериментальные исследования кинетики процесса растворения в роторном аппарате с модуляцией потока (РАМП) Автореферат дис.. .. канд. техн. наук.— М. МИХМ, [c.196]

    Экспериментальные исследования [156] показали, что в турбулентных пламенах наблюдается как нормальное распространение пламени, так и самовоспламенение объемов свежей смеси. С учетом этого процесс турбулентного горения при достаточно высокой интенсивности турбулентного потока можно представить в виде двух одновременно протекающих и конкурирующих между собой процессов — нормального распространения пламени и самовоспламенения объемов свежей смеси [5]. Поскольку самовоспламенение смеси в данном случае происходит в условиях интенсивной диффузии в объем свежей смеси активных центров (атомов, свободных радикалов, ионов) и, что особенно важно, при интенсивном воздействии на объем свежей смеси излучения окр ужающего пламени, период задержки самовоспламенения мал и стремится к постоянной величине. В этих условиях параметром, существенно влияющим на взрывное горение, является температура самовоспламенения смеси Т  [c.139]

    Коэффициент потерь неподвижного конфузора определим как отношение потерянной работы к кинетической энергии потока в выходном сечении, где скорость достигает наибольшего значения. Это обусловлено тем, что при приближении скорости к ско-)ости звука потери в конфузоре могут существенно возрасти. Лоэтому и при экспериментальных исследованиях и при расчетах важно связать увеличение потерь с запиранием выходного сечения. С учетом (2.9) выражение для коэффициента потерь конфузора можно представить в виде [c.61]

    Структура потоков перемешиваемой жидкости. Экспериментальные исследования показывают, что нри работе перемешивающих устройств создается сложный харакгер течения жидкости в трехмерном пространстве, обусловленный взаимодействием перемешиваемой жидкости с лопастями, перегородками и другими препятствиями, [c.277]

    Из давно применяющихся методов здесь следует упомянуть методы Хэлла и Смита а также Ирвина, Олсона и Смита , опубликованные в 1949 и 1951 гг. Описываемые методы ставили своей задачей определение длины слоя катализатора, необходимого для получения заданной степени превращения, а также вычисление степени превращения для заданной длины слоя как функции таких параметров, как скорость потока, исходный состав вещества, температура и давление на входе реактора. Расчеты проводились для неизотермического и неадиабатического процессов. В этом случае, вследствие потока тепла через стенки реактора, возникает поперечный температурный градиент, причем разность температур в радиальном направлении может быть значительной. Необходимо иметь возможность определения температурного профиля в осевом, и радиальном направлениях. Для получения данных, необходимых для проектирования, и прежде всего скорости реакции как функции температуры, давления, состава, а также эффективного коэффициента теплопроводности, требовались соответствующие экспериментальные исследования. В настоящее время теория и эксперимент, относящиеся к проблемам теплопроводности, получили значительное развитие. До недавнего времени, однако, эти данные были довольно ненадежными, а соответствующие методы расчета еще и сегодня нельзя считать достаточно завершенными. [c.153]

    Величина Р входит в диффузионный критерий Нуссельта Nud = d/D (где d — диаметр). Ее находят на основании экспериментальных исследований из критериальных зависимостей Nuj3 =/(Re, Ргд). Например, для процессов сорбции газа твердым веществом при поперечном межфазном диффузионном потоке имеем  [c.82]

    Экспериментальные исследования перечисленных вопросов равномерного распределения потоков по течению каналов и аппаратов до 50-х годов не носили систематического характера. Исследования выравнивающего действия сетки, плоских и пространственных (трубчатых) решеток, помещенных в потоке с большой начальной неравномерностью поля скоростей, 1)ыли проведены в 1946—1948 гг. [58], Начальная неравномерность поля скоростей на прямых участках создавалась путем установки перед ними прямолинейных диффузоров прямоугольного сечения с углами расширения =244-180° и степенью расншреиия /ii fi/fo = 33, а также коротких ( g/2b[ 1 ni — 3,3), криволинейных (dp/dx = onst) i ступенчатых диффузоров. [c.12]

    Экспериментальные исследования показали, что относительное расстояние от днища до края бокового входного отверстия практически не оказывает влияния на коэффициент сопротивления входного участка аппарата. Flpit центральном входе потока вниз аппарата сопротивление входного участка с решеткой получается на 10—15 % меньше, чем при центральном входе вверх. Объясняется это, по-видимому, тем, что при выходе струи из подводящего участка вниз создается некоторый диффузорный эффект, обусловленный радиальным растеканием, а следовательно, более плавным расширением потока, при котором происходит частичный [c.190]

    Многочисленные экспериментальные исследования по определению потерь во входном участке моделей аппаратов подтвердили правильность теоретического положения о том, что общее сопротивление участка с системой peHjeTOK, когда за последней достигается полное растекание потока по сечению, не превышает сопротивления участка с одиночной оптимальной рен1еткой. [c.191]

    Прежде чем перейти к рассмотрению результатов экспериментальных исследований моделей электрофильтров с конкретными условиями подвода потока, остановимся еще раз на вопросе о вторичном эффекте, связанном со слиянием отдельных струек (факелов), протекающих через отверстия решетки, и отрывом за ней потока от сгенок канала. Для электрофильтра с пылевым бункером и верхним карманом (для кренления электродов) влияние отрыва, как отмечалось в гл. 3, должно заметно уменьшиться и распределение скоростей в струе за решеткой должно быть близким к распределению для неограниченной струи (см. рис. 1.46). [c.217]

    Экспериментальным исследованием поперечной теплопроводности зернистого слоя занимались многие авторы [26—28]. Перенос тепла в зернистом слое осуществляется тремя путями [27, 28] движущейся жидкостью или газом, через твердые частицы и точки их соприкосновения и смешанный перенос через твердые частицы и обтекающий их поток. Пренебрегая последним способом переносом тепла и считая два первых аддитивными, Аэров [27 ] предложил следующую формулу для определения эффективного коэффициента поперечной теплопроводности [c.222]

    Кинетические исследования. Наиболее эффективный, хотя и самый трудный путь экспериментального исследования состоит в раздельном количественном изучении всех разнородных явлений (например, кинетики химических превращений, переноса массы и тепла, движения потока), взаимодействие которых определяет закономерности реального каталитического процесса. Эксперимент при этом должен быть поставлен либо в таких условиях, когда исключено действие всех факторов, кроме исследуемого, либо когда методами математического анализа может быть выявлено влияние каждого исследуемого фактора. Результатом такого исследования является построение математической модели, на основании которой может быть осуществлен расчетный выбор оптимального реясима процесса. [c.401]

    Для оценки модели проводилось экспериментальное исследование непрерывного расслаивания в горизонтальном декантаторе смеси винилацетат—вода. Декантатор имел стеклянные прозрачные стенки, что позволило фиксировать картину расслаивания. Основные размеры декантатора длина — 68, высота — 24,5 и ширина — 25 см. Эксперименты проводились при различных расходах и концентрации дисперсной фазы (органической), от режима недогрузки и режима захлебывания. Одновременно проводился расчет при заданных условиях. Параметры А", X и Я оценивались по данным по периодическому расслаиванию данной смеси и составляли К = 0,0025, Х = 0,2, X = 0,005. Параметр К определялся по экспериментальным значениям потока дисперсной фазы через границу раздела фаз, толш,ины зоны плотной упаковки капель и функции распределения капель по размерам у границы раздела, а X и X — по функции распределения капель по размерам соответственно в зоне стесненного осаждения и плотной упаковки. Определение функции распределения капель по размерам производилось с помош ью фотографирования. В табл. 7.3 приведены экспериментальные и расчетные значения объема образующегося дисперсного слоя для различных нагрузок исходной смеси и концентрации дисперсной фазы. Результаты свидетельствуют об удовлетворительном соответствии расчета и эксперимента. [c.304]

    Г"" Наряду со стандартизацией оборудования требуется стандар- тизация и математического описания его. Модель должна содержать информацию об изменении эффективности, деформации структуры потоков и т. п. нри варьировании технологических и конструктивных параметров в широком диапазоне. Все это позволит свести к минимуму экстраполяцию и интуитивное задание параметров нроцесса, уменьшить объем экспериментальных исследований. [c.91]

    Экспериментальное определение интенсивности перемешивания жидкости. Гидродинамическая модель потока вытеснения с диффузией при соответствующих условиях удовлетворительно описывает течение реальных жидкостей в трубчатых аппаратах и в неподвижных слоях зернистого материала. Экспериментальное исследование таких аппаратов показало, что интенсивность продольной диффузии в них, выраженная безразмерным параметром 01иЬ, хорошо согласуется с гидравлическими и динамическими свойствами системы. Связь указанного параметра с другими критериями, характеризующими режимы работы подобных аппаратов, представляющие наибольший интерес, графически изображена на рис. 1Х-24—1Х-26 . [c.269]

    Следует подчеркнуть, что по своей аэродинамической схеме центробежная машина сложнее осевых турбомашин. Отсутствие однозначной связи между градиентами давлений и скоростей, пространственный характер потоков и ряд других специфических явлений усложняют математический анализ и затрудняют использование теории решеток для создания инженерных методов расчета. С другой стороны, несмотря на ярко выраженную систему каналов, нельзя также ограничиваться элементарной канальной теорией одномерного потока и опытом, накопленным в области расчета обычных каналов различной степени диффузор иости. Неоднородность силового поля на различных участках проточной части, сочетание диффузорности с криволинейностью каналов и с косыми срезами на краях, взаимодействие врагцающихся и неподвижных элементов проточной части — все это вызывает ряд сложных явлений и обусловливает пространственный характер течения внутри каналов и неравномерную структуру потока. Это доказывает, насколько велико значение экспериментальных исследований в общем комплексе работ по аэродинамическому усовершенствованию центробежных компрессорных машин и методов их расчета. [c.4]

    Опытную проверку теоретических формул Кольборна и Аккермана выполнил Гейзер [178] при экспериментальном исследовании конденсации водяного пара из паровоздушной смеси и бензола из смеси его с воздухом при больших температурных напорах и разностях парциальных давлений пара, т. е. в условиях, когда поперечный поток конденсирующего пара оказывает уже существенное влияние на интенсивность тепло- и массообмена. Опыты были проведены при следующих режимных параметрах скорость парогазового потока йУпг = 24-10 м/с, соответствующие [c.156]


Смотреть страницы где упоминается термин Поток экспериментальное исследование: [c.141]    [c.125]    [c.72]    [c.9]    [c.13]    [c.220]    [c.218]    [c.108]   
Высокоэффективная тонкослойная хроматография (1979) -- [ c.21 ]




ПОИСК







© 2025 chem21.info Реклама на сайте