Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Массообмен газ—жидкость

    Насадочные массообменные аппараты представляют собой колонны, заполненные насадкой — геометрическими телами с возможно более развитой поверхностью (кольца, седла, кусковой материал и т. д.) (рис. 10). Соприкосновение газа (жидкости) с жидкостью происходит на смоченной поверхности насадки, по которой стекает жидкость-поглотитель. Течение жидкости по насадке носит в основном пленочный характер, и поэтому насадочные аппараты относятся к пленочным. [c.56]


    Такое разделение осуществляется обычно путем многократного контакта меи ду парами и жидкостью. При контакте происходит массообмен и теплообмен между неравновесными нарами и жидкостью в результате чего кидкость обогащается высококипящим компонентом, а пары — низкокинящим компонентом. Такой процесс получил название процесса ректификации. [c.210]

    Экспериментальному изучению массообмена в системах жидкость -жидкость в случае лимитирующего сопротивления сплошной фазы посвящено большое количество экспериментальных исследований [257, 301, 302]. При отсутствии ПАВ массообмен в капли удовлетворительно описывается уравнением Буссинеска — Хигби (4.16) в интервале 10 < [c.203]

    Величина Б ср. характеризует несовершенство массообмена на тарелках, и чем менее совершенно работает тарелка, тем больше эта величина. Число тарелок, эквивалентное одной ступени изменения концентрации, зависит от физических свойств участвующих в массообмене жидкостей и газов, от гидродинамических условий взаимодействия фаз (характеризуемых скоростью газа или пара в колонне, в отверстиях тарелок и прорезях колпачков на тарелках), от глубины погружения прорезей в жидкости, от расстояния между тарелками и других факторов. Числовое значение в значительной мере зависит от взаимного направления движения фаз в колонне и механического уноса капель жидкости газом или паром. Поэтому достаточно точно число тарелок, эквивалентное одной ступени изменения концентрации, может быть определено только опытным путем. Практически .р. равно от 1,25 до 5 для большинства случаев можно принять 1,5—2, [c.510]

    С верхней тарелки через стакан 1 стекает жидкость и, переливаясь через порожек 7, движется в направлении, указанном стрелками. На этом пути происходит массообмен жидкости с парами, поднимающимися по колонне через отверстия в диске тарелки. [c.467]

    Жидкость через сегментную сливную трубу (см. рис. 121) заполняет тарелку на уровень, определяемый положением регулировочной планки 9. Колпачки своими прорезями погружены в жидкость. Пар проходит снизу через паровые патрубки, щели колпачков и барботирует сквозь слой жидкости при этом происходит массообмен. Жидкость переливается на ниже расположенную тарелку, а пар идет вверх. Расстояние между тарелками принимают из ряда значений 200 250 300 350 400 450 и 500 мм. [c.226]

    РГ 0,1-4 (А 164-1899) Проведение химических процессов при интенсивном перемешивании и массообмене жидкость — газ [c.87]

    Поверхность контакта фаз, зависящая от гидродинамики процесса, относится к управляемым переменным (например, расход газа и жидкости). Эти параметры в процессе эксплуатации могут изменяться в достаточно широких пределах, но их значения не должны выходить за пределы допустимых. По суш,е-ству, спроектировать массообменный процесс — это так организовать поверхность контакта фаз и управлять ею, чтобы обеспечить заданную степень извлечения целевых компонентов при изменяющихся условиях эксплуатации. Однако необходимо заметить, что пока не существует удовлетворительных ни физических, ни математических моделей, позволяющих надежно определять вклад конструктивных и гидродинамических факторов в организацию массообменной поверхности. И поэтому всякий раз приходится прибегать к сугубо эмпирическим методам. [c.56]


    Массообмен и теплообмен между парами и жидкостью па каждой ступени контактирования могут происходить лишь при наличии так называемой разности фаз, т. е. ири отсутствии равновесия между парами и жидкостью, поступающими на каждую ступень. Следовательно, температура паров, поступающих на данную ступень, должна быть выше, чем температура жидкости. После контакта паров и жидкости на каждой ступени в пределе должно наступать равновесие т. е. выравнивание температур паровой и жидкой фаз. [c.210]

    Насадок, полностью удовлетворяющих всем указанным требованиям, не существует, поскольку некоторые из требований противоречивы, например, пункты 1 и 3. При нормальной эксплуатации насадоч-ных колонн массообмен происходит в основном в пленочном режиме на смоченной жидкостью поверхности насадок. Естественно, чем больше удельная поверхность насадки, тем эффектив — [c.179]

    IV. 5. Тепло- и массообмен между зернистым слоем и потоком газа (жидкости) [c.140]

Рис. 155. Элемент массообменного центробежного аппарата с диспергированием жидкости Рис. 155. Элемент <a href="/info/1458347">массообменного центробежного аппарата</a> с диспергированием жидкости
    Полученные результаты дают представление о переносе массы в пределах той фазы, в которой происходит химическая реакция. Они могут быть использованы и для других случаев, например, когда перенос массы происходит из жидкости в газ и реакция протекает в газовой фазе или когда имеет место массообмен между двумя жидкими фазами. [c.257]

    Общие выводы, касающиеся масштабирования абсорбционных колонн с насадкой, можно сформулировать следующим образом. Повышая п-кратно производительность, необходимо увеличить диаметр колонны пропорционально и сохранить постоянство отношения размера насадки к диаметру аппарата. Показатель изменения масштаба высоты колонны может изменяться в пределах от 0,4 до 0,25 в зависимости от того, оказывается ли основное сопротивление массообмену со стороны газовой фазы или со стороны жидкости. Нужно считаться с возможностью возникновения эффектов масштабирования, обусловленных нарушением подобия стекания жидкости по поверхности насадки через газ, движущийся противотоком. Важным ограничением увеличения масштаба [c.460]

    Традиционный подход к решению задач массо- и теплообмена заключается в исследовании уравнений конвективного переноса, в которых компоненты скорости жидкости определены из рассмотрения соответствующей этому процессу гидродинамической задачи. При этом не учитывается влияние массовых и тепловых потоков на гидродинамические характеристики течения. Для экстракции, абсорбции и ряда других процессов такие приближения дают удовлетворительные результаты. Однако в ряде задач теплообмена, связанных с испарением или конденсацией капель, массообмен может оказывать существенное влияние на гидродинамику потока. [c.168]

    Жидкости и газы, насыщающие нефтегазоконденсатные пласты, представляют собой смеси углеводородных, а также неуглеводородных компонентов, некоторые из которых способны растворяться в углеводородных смесях. При определенных режимах разработки нефтяных и нефтегазоконденсатных месторождений в пласте возникает многофазное течение сложной многокомпонентной смеси, при котором между движущимися с различными скоростями фазами осуществляется интенсивный массообмен. Переход отдельных компонентов из одной фазы в другую влечет за собой изменение составов и физических свойств фильтрующихся фаз. Такие процессы происходят, например, при движении газированной нефти и вытеснении ее водой или газом, при разработке месторождений сложного комйонентногс ( ава (в частности, с большим содержанием неуглеводородных компонентов), при вытеснении нефти оторочками активной примеси (полимерными, щелочными и мицеллярными растворами различными жидкими и газообразными растворителями). Основой для расчета таких процессов служит теория многофазной многокомпонентной фильтрации, интенсивно развивающаяся в последние годы. Вместе с тем заметим, что область ее применения шире, чем здесь указано, и эта теория имеет важное общенаучное значение. [c.252]

    При отсутствии циркуляции внутри частицы уравнения конвективной диффузии сводятся к уравнению молекулярной диффузии. Будем рассматривать массообмен, осложненный прямой бимолекулярной реакцией дробного порядка. Для обратной реакции приведем два случая -мономолекулярную и бимолекулярную реакцию. Рассмотрим общий случай соизмеримых сопротивлений фаз. Циркуляцией внутри частицы можно пренебречь в системе жидкость-газ из-за больщих значений д или при наличии ПАВ, тормозящих циркуляцию. [c.284]

    Заметим, что колонные аппараты обоих классов не всегда имеют два потока взаимодействующих веществ в ряде случаев одно из них (твердое или жидкое) может длительное время оставаться в неподвижном или турбулизованном состоянии на распределительных устройствах, омываясь непрерывным потоком другого в виде жидкости или газа (пара). В последние годы получили применение колонные секционированные аппараты, в которых взаимодействуют три фазы жидкость, газ и твердые частицы. Пр 1 этом газ и жидкость движутся непрерывными потоками, а слой твердых частиц, приведенный в псевдоожиженное состояние, длительное время остается в секциях аппарата. В массообменных аппаратах твердыми частицами (обычно сферической формы) являются инертные материалы, а в химических реакторах — реагенты или катализаторы. [c.14]


    Распределение времени пребывания частиц потока (жидкости, газа или сыпучего материала) в аппарате и параметры моделей продольного перемешивания определяют экспериментальным путем. Для этой цели получили широкое распространение методы нанесения возмущения в определенном сечении потока и фиксирования вызванных им последствий (отклика системы) в другом сечении. Возмущающий сигнал может быть различным по форме и по физической природе. Наибольшее распространение получили импульсная и ступенчатая формы возмущений, значительно реже применяют возмущающий сигнал циклического вида. В качестве сигнала в поток вводят трассер (индикатор краситель, солевой раствор и т. п.), химически не взаимодействующий со средой и не участвующий в массообмене. [c.36]

    Для исследования продольного перемешивания s экстракционных колоннах с отстойниками на основе рециркуляционной модели структуры потока используется [43] схема модели по рис. IV-21. Здесь рабочая часть колонны объемом Vp представляет каскад из п последовательных ячеек полного перемешивания с транзитным потоком V и рециркуляционным потоком между ячейками ш. Для учета влияния на кривые отклика отстойной зоны она представляется в виде ячейки объемом Уот со средней концентрацией трассера Сот. Между отстойной зоной и последней, л-й, ячейкой рабочей части колонны происходит массообмен за счет конвективных потоков жидкости (Ост. [c.139]

    Гильденблат И. А., Родионов А. И., Демченко Б. И.. Теор. основы хим. технол.. 6, 10 (1972). Влияние коэффициента диффузии на массообмен между потоками жидкости и газом (в ячейках с мешалками и колоннах с орошаемой стенкой при различных физических свойствах жидкостей). [c.269]

    Сравнение с экспериментальными данными. В области низких чисел Pe=RePr (или ReS ) достаточно трудно получать надежные экспериментальные данные по тепло-и массообмену жидкости с частицами. В экспериментах с постоянной температурой (или концентрацией) на поверхности частиц перепад температур на выходе из (плотно-упакованных или псевдоожиженных) слоев связан с разностью температур на входе соотношением [c.263]

    Рассмотрим ограничения, накладываемые на выполнение формулы аддитивности, более подробно. Выполнение условия равновесия (4.5) на границе раздела фаз у большинства исследователей не вызьшает сомнения, поскольку процессы, протекающие на поверхности раздела фаз при физической абсорбции и экстракции — сольватация, десольватация, изомеризация и т. п., имеют скорости, значительно превышающие скорость массообмена. Однако в ряде работ по массообмену в аппаратах с плоской границей раздела фаз и с механическим перемешиванием в каждой из фаз авторы обнаружили отклонение от формулы аддитивности, обусловленное, как они предположили, поверхностным сопротивлением. В работе [221] приведен критический обзор основньгх исследований, в которых, по мнению авторов, было обнаружено поверхностное сопротивление в системах жидкость - жидкость. В этих работах частные коэффициенты массоотдачи определялись косвенным методом с погрешностью, большей чем отклонение от формулы аддитивности. Кроме того, в некоторых работах обнаружены методические ошибки. Для проверки формулы аддитивности требуются более точные методы определения частных коэффициентов массоотдачи (см. раздел 4.4). Поверхностное сопротивление массотеплообмена мало изучено. Одним из возможных механизмов является экранирование поверхности поверхностно-активными веществами (ПАВ) [222-224]. К обсуждению роли поверхностного сопротивления мы будем возвращаться в последующем изложении. [c.171]

    Таким образом, наиболее простой метод построения шкалы потенциала 0 состоит в определении удельных влагосодержаний системы двух тел (исследуемого и эталонного), приведенных в непосредственное соприкосновение друг с другом и находящихся в состоянии термодинамического равновесия. При этом важно, чтобы непосредственный контакт о спечивал свободный влагообмен между телами. Если влагосодержание тела больше максимального сорбционного влагосодержания (и>ис,л), то влагообмен происходит при непосредственном соприкосновении капиллярнопористых тел. При влагосодержании, меньшем максимального сорбционного (м С Ысш), необходимым условием термодинамического равновесия является не только постоянство температур, но и постоянство влажности окружающего воздуха Т = onst, ф = onst). В этом случае имеет место влагообмен путем сорбции и десорбции для паровоздушной смеси, а также непосредственный массообмен жидкости через соприкасающиеся поверхности тел. [c.67]

    Процесс разделения осуществляется в аппаратах, называемых ректификационными колоннами, путем многократного контакта неравновесных потоков пара и жидкости. Отличие процесса ректификации от рассмотренных массообменных процессов состоит в том, что массообменивающиеся неравновесные потоки пара и жидкости не независимы, а формируются из питания в самом процессе, Это формирование обусловлено разными температурами кипения (испарения) разделяемых компонентов и изменением температуры по высоте колонны. [c.103]

    Центробежные экстракторы — перспективное оборудование для проведения процессов жидкостной экстракции. В этих экстракторах ускорение генерируемого центробежного поля превышает ускорение свободного падения в 10 10 раз, вследствие чего достигаются большие скорости взаимодействия обрабатываемых жидкостей, высокая эффективность массообмена и четкая сепарация выходных потоков. Поэтому такие аппараты компактны, в них невелики объемы участвующих в массообмене жидкостей, минимальна пожаро- и взрывоопасность установок. Поскольку время контакта в этих аппаратах невелико, они незаменимы при обработке нестойких продуктов, легкоэмульгируемых жидкостей и смесей компонентов с мало различающимися плотностями. Центробежные экстракторы успешно используются при обработке вязких жидкостей, например при селективной очистке смазочных масел. [c.260]

    Качественное рассмотрение, проведенное Дильманом [55, 67], приводит к выводу, что в системах жидкость — жидкость п = 23. Ддя установления этого закона необходимы надежные экспериментальные данные о зависимости коэффициента массопередачн от числа Шмидта. Из имеющихся в литературе данных по массообмену в системах жидкость — пар [68], жидкость — жидкость [69] и жидкость — газ [70, 71] следует, что в указанных системах й 2. [c.183]

    Введенное выше понятие координационного числа Л/ суш,е-ственно и само по себе, а не только как вспомогательная функ-ц11я, с помощью которой получено соотношение Гаусса (1.6,6). В непосредственной близости от контакта между шарами образуется капиллярная щель, в которой в первую очередь конденсируются пары и задерживаются стекающие по насадке смачивающие жидкости. Вблизи этих контактов образуются и застойные зоны протекающего потока, замедляющие диффузию и массообмен потока с зернами. С увеличением Nk доля этих застойных зон возрастает. [c.11]

    При малых значениях Кеэ возможно влияние e Te TBeiyion конвекции на массообмен в зернистом слое, особенно при течении жидкости. В работе [108] показано, что при Кеэ < 1 значения р различны при разном направлении потока воды в слое элементов из р-нафтола и бензойной кислоты. При движении воды снизу вверх интенсивность массоотдачи в несколько раз ниже, чем при движении воды сверху вниз. Влияние направле-ния потока можно объяснить только эффектами свободной конвекции, которые проявляются при разнице удельных весов чистой жидкости и пограничных с элементами слоев жидкости, насыщенных примесью растворенного вещества. При движении растворителя сверху вниз более тяжелые пограничные слои жидкости стекают вниз быстрее основного потока, повышая скорость растворения при движении снизу вверх раствор может скопиться в пространстве между зернами и затруднить перенос.  [c.155]

    Корпус обогревается рубашками 2, в которые подается пар или высокотемпературный теплоноситель. Внутри корпуса вращается вал с лопатками 3. Жидкость подается в верхней части через распределитель 4 на внутреннюю поверхность корпуса. Лопасти размазывают жидкость по теплообменной поверхности, что обеспечивает интенсивный тепло- и массообмен в тонком слое жидкости и малое время пребывания продукта в аппарате, что особенно важно при обработке термонестойких веществ. Упаренная жидкость отводится через нижний штуцер 1. Верхняя, расширенная, часть аппарата 5 служит сепаратором брызг. Аппараты [c.164]

    Паровой поток, поднимающийся снизу, более нагрет и более богат тяжелыми (высококипящнми) компонентами, чем жидкостный поток, стекающий сверху (рис. 34). При взаимодействии этих неравновесных потоков происходит тепло- и массообмен высококипящие компоненты (ВКК) переходят в жидкостный поток, а легкие, низкокнпящие (НКК) компоненты — в паровой. В результате в верхней части колонны получаются пары, обога-щенцые низкокипящими компонентами и называемые дистиллятом (Д), а в нижней — жидкость, обогащенная высококипящим компонентом и называемая остатком С ). [c.103]

    Многие химические и тепло- и массообменные процессы тесно связаны с нагреванием, выпариванием, охлаждением и конденсацией. В зависимости от условий технологического режима в качестве источников тепла используют дымовые газы, электроэнергию, воздух, в качестве промежуточных теплоносителей — жидкие и парогазообразные вещества. К жидким теплоносителям относятоя вода, нефтяные масла, глицерин, дифенильная смесь, кремний-органические жидкости, легкоплавкие расплавы металлов и др. К газообразным теплоносителям относятся перегретый водяной пар, воздух, продукты сгорания твердого, жидкого и газообразного топлив и др. [c.132]

    Массообмен в зоне отрыва можно приближенно рассчитать, вос-пользовавишсь для функции тока в кормовой области сферы разложением типа (4.101). При этом формально считается, что в зоне отрыва образуется диффузионный пограничный слой и что в точке набегания потока со стороны отрывной зоны (точка т = тг) концентрация вещества равна концентрации вдали от сферы. Полный диффузионный поток определяется суммой потоков в пограничных слоях до точки отрыва и в зоне отрьганого течения. Такой приближенный способ учета массообмена в вихревой зоне был применен в работах [281, 286]. Следует однако отметить, что он носит весьма условный характер, так как ввиду наличия циркуляции жидкости в вихревой зоне граничное условие постоянства концентрации вдали от капли для этой области не вьшолняется. На рис. 4.11 кривая/характеризует массообмен твердой сферы. Штриховая часть этой кривой соответствует решению без учета массообмена в зоне отрыва. Заметим, что при фиксированных значениях Ре с изменением Ке от 0,5 до 100 коэффициент массообмена для твердой сферы возрастает примерно в 1,6 раза. На рис. 4.11 приведены также экспериментальные данные Гриффита [287] для капель с отношением вязкостей i =0,38 0,42 и 2,6. Для твердой сферы и капель жидкости в газовом потоке для массо- и теплообмена опытные данные в ряде работ [288-291] обрабатьшались в виде корреляционной зависимости  [c.201]

    Уэллек и Хуанг [341] исследовали стационарный массоперенос к сфере при малых значениях Ке, определяя поле скоростей из выражений для функции тока Накано и Тьена [50]. Результаты их расчетов для критерия Шервуда в зависимости от параметров задачи представлены на рис. 4.20. Заметим, что при всех значениях Ре усиление псевдопласти-ческих свойств жидкости приводит к более интенсивному массообмену. Для твердой сферы такой результат находится в противоречии с расчетами по формуле (4.158) и, как отмечено в работе [341], с решением, использующим приближенные значения для функции тока по данным Томита [342]. Это указывает на чувствительность решения к реологическому параметру и на необходимость использования наиболее корректных гидродинамических решений. Данные расчетов [341] показьта-ют, что при Ре>5 10 для решения диффузионной задачи можно воспользоваться формулами (4.119) и (4.122), причем как нетрудно заметить из рис. 4.21, формула (4.119) в этом случае также применима гишь для небольших значений параметра X, характеризующего отноше- [c.215]

    Высокослойные барботажные колонны применяют в промышленности в качестве химических реакторов, абсорберов и др. Используют барботажные колонны диаметром порядка одногО" метра и более при отношении высоты барботажного слой к диа- метру колонны L/Z)k<7—10. Благодаря перемешиванию восходящими пузырьками газа жидкость циркулирует в вертикальном направлении, в значительной степени перемешиваясь по высоте аппарата. Это обстоятельство ограничивает применение высокослой-ных барботажных колонн для массообменных процессов. [c.195]

    Ряд ректификационных аппаратов и испарителей работают с использованием центробежной силы, которая служит для развития поверхности контакта фаз и организации направленного движения кидкостн [17]. Общий недостаток центробежных массообменных аппаратов — относительная сложность конструкции, поэтому нх, как правило, применяют в тех случаях, когда обычные ректификационные колонны не дают желаемого результата. В основном их применяют для процессов дистилляции под вакуумом и обработки высоковязких жидкостей. [c.163]

    Жпд1Сость движется снизу вверх в зоне ре[неток вследствие нх колебания происходит интенсивное пере-мептванне жидкостей, участвующих в процессе экстракции, что обеспечивает хороп1ий массообмен. [c.201]

    Ими показано, что при близком к захлебыванию режиме подвисания в аппарате создаются наиболее благоприятные условия массонередачи между жидкой и газовой фазой вследствие возрастания толщины жидкостной пленки на кольцах насадки, увеличения степени их смоченности и более равномерного распределения жидкости, а также вследствие изменения других условий, способствующих интенсивному массообмену (увеличение скорости газа, падение диффузионного сопротивления граничащего с газом слоя жидкостной пленки, возникновение волн и вихрей на ее поверхности и др.). [c.18]

    Бабак В. Н., Холпанов Л. П., Малюсов В. А., Жаворонков Н. М., в сб. Тепло- и массоперенос , т. 4, Минск, 1972, стр. 227. Установившийся массообмен в системе жидкость—газ в условиях ламинарного нисходящего прямотока, осложненный химической реакцией псевдопервого порядка. [c.268]

    AsanoK.,Fuj itaS., hem. Eng. S i., 26, 1187 (1971). Массообмен в широкой области изменения движущей силы. Изучение испарения чистых жидкостей в газовые потоки (в ячейке с мешалкой). [c.278]

    Mashelkar R. А., Brit. hem. Eng., 15, 1297 (1970). Барботажные колонны (критический обзор литературы по гидродинамике, тепло- и массообмену в полых, насадочных п секционированных барботажных колоннах со сплошным слоем жидкости). [c.285]


Библиография для Массообмен газ—жидкость: [c.328]   
Смотреть страницы где упоминается термин Массообмен газ—жидкость: [c.161]    [c.57]    [c.78]    [c.67]    [c.5]    [c.582]    [c.400]    [c.222]   
Моделирование и системный анализ биохимических производств (1985) -- [ c.87 , c.89 ]




ПОИСК





Смотрите так же термины и статьи:

Берман JI. Д. Тепло- и массообмен в парогазовой фазе при интенсивном испарении жидкостей

Диффузионный след. Массообмен цепочек капель и частиц с жидкостью

Кинетика массообмена между жидкостью

Кинетика массообменных процессов в системах газ — твердая фаза, жидкость — твердая фаза (сушка, адсорбция, ионообмен, экстрагирование, кристаллизация) Бутков, Л. К. Маринин, Э. П. Павлов, А. И. Плановский. Изучение процесса истечения турбулентной газовой струи в псевдоожиженный слой зернистого материала

Колонный аппарат для процессов массообмена между газом и жидкостью

Корольков, Л. А. Осипов. Расчет массообменных аппаратов со стационарным слоем сорбента в системах твердое тело — жидкость (газ)

Массообмен

Массообмен в системах газ—жидкость

Массообмен в системах жидкость—жидкость

Массообмен в системах твердое тело—жидкость

Массообмен в системе газ—жидкость при механическом перемешивании

Массообмен жидкости газа, пара с твердым

Массообмен жидкость—клетка

Массообмен и распределение жидкости по насадке

Массообмен между жидкостью (газом или паром) и твердым телом

Массообмен между жидкостью (газом) и твердым телом

Массообмен между жидкостью и твердой сферой

Массообмен при пленочном течении жидкости

Массообмен сферической капли (пузыря) с ламинарным потоком жидкости при больших числах Пекле

Массообменный аппарат для взаимодействия газа и жидкости

Олевский, Б. И. Виноградский, Л. Г. Кирный, Евстафьева. Вращающийся щелевой распределитель жидкости для массообменных колонн

Пивоваров, П. А. Семенов. Исследование распределения орошающей жидкости в многотрубном аппарате скоростного массообмена

Процессы теплообмена, осложненные массообменом Теплообмен при кипении жидкости. Механизм процесса и количественные закономерности. Характеристические значения. Теплообмен при сублимации под вакуумом

Процессы теплообмена, осложненные массообменом Теплообмен при кипении жидкости. Механизм процесса. Характеристические значения. Сублимация под вакуумом

Рекомендуемые зависимости для коэффициентов тепло- и массообмена между зернистым слоем и потоком газа (жидкости). Дополнительные вопросы межфазного тепло- и массообмена

Теоретические основы процессов тепло-массообмена при барботаже продуктов сгорания в жидкости

Тепло- и массообмен в процессе испарения жидкости

Тепло- и массообмен между зернистым слоем и потоком газа (жидкости)

Тепло- и массообмен при испарении жидкости в парогазовую среду

Теплообменник дестилляции массообмен газа и жидкости

Эффективность разделения на тарелках массообменного аппарата за счет прямотока и противотока жидкости



© 2025 chem21.info Реклама на сайте