Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Температура плавления фтора

    Фтор, вследствие своей высокой электроотрица,тельности, может быть выделен из соединений только путем электролиза. Впервые он был получен в 1886 г. путем разложения электрическим током смеси безводного жидкого фтороводорода с KF. Этот метод применяется в настоящее время для промышленного получения фтора. Расплав состава KP-I-2HP (температура плавления 70 °С) подвергают электролизу. Электролиз ведут в никелевом сосуде, который является катодом, а анодом служит уголь. Катодное и анодное пространства разделены диафрагмой для предотвращения взрыва при смешивании продуктов электролиза — водорода и фтора. [c.482]


    Физические и химические свойства. Фтор — газ зеленовато-желтого цвета, очень ядовит. Температура плавления —223° С, кипения —186° С. [c.173]

    Газообразный фтор в толстых слоях окрашен в зеле-новато-желтый цвет, жидкий — канареечно-желтый. В нормальных условиях фтор — двухатомный газ. Температура плавления фтора —219,62° С, а температура кипения— 188,14. Плотность газа при 0°С и 760 мм рт. ст. составляет 1,696 г/л. [c.345]

    Фтор — самый активный химический элемент. Он образует соединения со всеми элементами, может окислять даже кислород. Фтор, фтористый водород и его соли ядовиты. Температура плавления фтора —219,62 С, а кипения —188,14 °С. Фтор пытались получать различными способами, однако единственно пригодным для промышленного производства этого активного газа оказался электролиз расплавов солей. [c.535]

    Свободный фтор р2 представляет собой почти бесцветный (слегка зеленовато-желтый) газ, имеющий при нормальных условиях плотность 1,696 г/л. Температура плавления фтора —219,6 , температура кипения (при 760 мм рт. ст.), —188,1°, критическая температура —129°, критическое давление 55 ат. Давление насыщенного пара жидкого фтора в интервале от —219,6° (1,7 мм рт. ст.) до —183,7° 1220 мм рт. ст.) можно вычислить по формуле  [c.305]

    ВОДОРОДНАЯ СВЯЗЬ — соединение посредством атома водорода двух атомов разных молекул или одной молекулы. В. с. возникает между атомами кислорода, азота, фтора, реже—хлора, серы и др. С наличием В. с. связаны такие свойства веществ, как ассоциация молекул и обусловленное ею повы-ш епие температуры плавления и кипения, особенности в колебательных и электронных спектрах, аномалии в растворимости и др. (см. Вода). Благодаря [c.57]

    Отмечается, что соединения, молекулы которых построены по типу ионной связи, имеют высокие температуры плавления и кипения. Так, температура плавления фтористого натрия 995°С, температура кипения 1702°С, тогда как температура плавления фтора — 218°С, кипения — 187°С. [c.503]

    Молекула фтора Ра имеет относительно небольшую массу и достаточно подвижна, поэтому фтор в обычных условиях — газ (светло-желтого цвета), обладает низкой температурой плавления (—223°С) и кипения (—187°С). [c.296]

    Вследствие симметричного строения макромолекул политетрафторэтилена и малого размера атома фтора большая часть их правильно ориентирована и образует упорядоченную структуру. Упорядоченная кристаллическая часть достигает большой концентрации (80—90%). Большой процент кристаллической части и неупорядоченная аморфная фаза обусловливают, с одной стороны, высокую температуру плавления, достаточную твердость, а с другой — хорошую гибкость и чрезвычайно низкую температуру хрупкости. Температура стеклования аморфной фазы —120° С. Ниже этой температуры аморфная фаза теряет каучукоподобные свойства, но полимер все же еше не становится хрупким. Температура разрушения (плавления) кристаллитов, т. е. превращения их в аморфную фазу, 327° С. Она значительно выше, чем у полиэтилена, вследствие того, что энергия взаимодействия между атомами фтора соседних цепей (2000 кал/моль) намного больше, чем энергия взаимодействия между атомами водорода. Полимер в аморфном состоянии, т. е. при температуре выше 327° С, не является вязко-текучим, а остается в высокоэластическом состоянии. Нагревание вплоть до температуры разложения (415° С) не превращает полимер в вязко-текучее состояние. Поэтому обычные методы переработки термопластичных масс (горячее прессование, литье под давлением, шприцевание) для политетрафторэтилена не применимы. [c.145]


    Еще в XIX веке было замечено, что соединения, в которых атом водорода непосредственно связан с атомами фтора, кислорода и азота, обладают рядом аномальных свойств например, температур плавления и кипения. Обычно в ряду однотипных соединений элементов данной подгруппы температуры плавления и кипения с увеличением атомной массы элемента возрастают. Это объясняется усилением взаимного притяжения молекул, с увеличением размеров атомов и с ростом дисперсионного взаимодействия между ними. Так, в ряду [c.155]

    Температуры плавления и кипения с изменением кристаллической решетки резко повышаются от фтора к иоду. В этом же направлении увеличиваются плотности и молекулярные объемы, [c.592]

    Физические свойства. С увеличением заряда ядра от фтора к иоду возрастают температуры плавления, кипения, электрическая проводимость (табл. 3). Галогены обладают резким запахом и ядовиты. [c.168]

    В ряду элементов УПА-группы наблюдается более или менее закономерное изменение физических и физико-химических характеристик атомов, молекул и ионов. От фтора к иоду возрастают температуры плавления и кипения, энтальпия этих процессов, а также плотность (см. выше). С увеличением числа электронных слоев увеличиваются размеры атомов и молекул, следовательно, усиливаются дисперсионные силы межмолекулярного притяжения, что ведет к росту указанных характеристик. Прочность молекул от хлора к иоду уменьшается в соответствии с ростом межъядерных расстоя- [c.365]

    Температуры плавления карбидов иттрия соответственно 1950, 1800 и 2300°. Карбиды лантаноидов — желтые кристаллические вещества. Во влажном воздухе неустойчивы разлагаются водой, образуя углеводороды, главным образом ацетилен. При температуре красного каления под действием хлора, фтора, сероводорода, азота превращаются соответственно в хлориды, фториды, сульфиды, нитриды 90, 112]. Разбавленные кислоты и щелочи легко разлагают карбиды РЗЭ. [c.75]

    Жидкий фтор окрашен в ярко-желтый цвет. Его относительная молекулярная масса [38] близка к относительной молекулярной массе аргона [39,94]. Свойства жидкого фтора — температура плавления, кипения, критическая температура и критическое [c.222]

    Ионные фториды — кристаллические вещества с высокой температурой плавления. Координационное число иона фтора 6 (NaF) или 4 ( aFj). Ковалентные фториды — газы или жидкости. [c.282]

    Фтористый водород имеет ряд преимуществ по сравнению с серной кислотой благодаря таким свойствам, как низкие температуры плавления и кипения (—83° и 4-19,4° соответственно) и стойкость к реакциям окисления или восстановления. Его можно использовать как при температуре —30°, так и при температуре выше комнатной. В промышленных П2юцес-сах при его использовании не требуется охлаждения, тогда как при применении серной кислоты необходимо применять охлаждение. Почти весь фтор, содержащийся в отработанном катализаторе, регенерируется в виде фтористого водорода, поэтому расход катализатора в промышленном процессе очень низкий. [c.311]

    Водородная связь. Еще в XIX веке было замечено, что соединения, в которых атом водорода непосредственно связан с атомами фтора, кислорода и азота, обладают рядом аномальных свойств. Это проявляется, например, в значениях температур плавления и кипения подобных соединений. Обычно в ряду однотипных соединений элементов данной подгруппы температуры плавления и кипения с увеличением атомной массы элемента возрастают, Это объясняется усилением взанмиога притяжения молекул, чтб связано с увеличением размеров атомов и с ростом дисперсионного взаимодействия между ними (см. 48). Так, в ряду H I—НВг—HI температуры плавления равны, соответственно, [c.154]

    Энергия подородной связи значительно меньше энергии обычной ковалентной связи (150—400 кДж/моль). Она равна примерно 8 кДж/моль у соединений азота и достигает около 40 кДнсоединений фтора. Однако этой энергии достаточно, чтобы вызвать ассоциацию молекул, т. е. их объединение в димеры (удвоергные молекулы) или полимеры, которые в ряде случаев существуют не только в жидком состоянии вещества, но сохраняются и при переходе его в пар. Именно ассоциация молекул, затрудняющая отрыв нх друг от друга, и служит причиной аномально высоких температур плавления н кипения таких веществ как фтороводород, вода, аммиак. Другие особенности этих веществ, обусловленные образованием водородных связей и ассоциацией молекул, будут рассмотрены ниже, при нзученни отделыгьгх соединений. [c.156]

    Химическая связь в соединениях алюминия более ионная, чем в соединениях бора, что проявляется в свойствах соединений. Так, ВРз — газ, галогенангидрид, А1Рз — твердое соединение с высокой температурой плавления, его вполне можно назвать солью. Вследствие меньшей, чем у фтора, электроотрицательности других галогенов Al la, А1Вгз и АПз — соединения, промежуточные по свойствам между галогенидами неметаллов и солями. [c.338]


    Фторид осмия (VIII), или октафторид осмия, OsFg получается путем прямого соединения осмия с фтором при 250°С в виде бесцветных паров, сгущающихся при охлаждении в лимонно-желтые кристаллы с температурой плавления -34,4°С. [c.531]

    Водородная связь. В тех случаях, когда водород соединен с сильно электроотрицательным элементом, он может образовать водородную связь, которая является промежуточной между химической и меж-молекулярной. Эта связь обусловлена тем, что смещение электрона от атома водорода превращает его в частицу, не имеющую электронов, не отталкивающуюся электронами других частиц, т. е. испытывающую только притяжение. Водородная связь проявляется тем сильнее, чем больше электроотрицательность атома-партнера и чем меньше его размеры, поэтому она характерна для соединений фтора и кислорода, в меньшей степени — для азота и еще в меньшей степени — для хлора и серы. Соответственно меняется и энергия водородной связи. Благодаря водородным связям молекулы объединяются в димеры, полимеры и ассоциаты. Ассоциация приводит к повышению температуры плавления и температуры кипения, изменению растворяющей способности и т. д. Водородная связь образуется очень часто, и объясняется это тем, что молекулы воды встречаются повсеместно. Каждая из них, имея в своем составе два атома водорода и две необобществленные электронные пары, может образовать четыре водородные связи. [c.237]

    Применение, В последнее время фтор и его соединения нашли широкое применение. Фтористый водород, например,— хороший катализатор процессов получения высококачественного горючего. Растворы солей плавиковой кислоты предохраняют древесину-от гниения. Криолит используют для понижения температур плавления ряда минералов, что важно для процессов электролиза. Фторорганические соединения являются инсектицидами. Фтористый бор ВРз — катализатор полимеризации ряда соединений. Фторпроизводные углеводородов — ценные фреоны — хладоносители для холодильных установок (наибольшее распространение и ценность имеет дихлордифтор-метан ССЬРг). [c.174]

    В окислительной атмосфере вплоть до 1460 5°С 12A7 плавится конгруэнтно. В восстановительной атмосфере его температура плавления 1480 5°С. Решетка 12A7 способна включать ионы фтора, хлора с образованием соединения i2A7 aX2, где X—ОН, F, С1, при этом параметры элементарной ячейки увеличиваются в следующем порядке фторид — гидрат — хлорид. [c.144]

    Пользуясь справочной и у 1ебной литературой, укажите, какой тип кристаллической peнJeтки отвечает твердым дигалогенам. За счет каких сил межмолекулярного взаимодействия молекулы галогенов удерживаются в кристалле Почему температура плавления иода значительно вьшле, чем у твердого фтора  [c.107]

    В атмосфере Fj и lj литий воспламеняется без подогревания. Натрий требует для соединения с этими элементами повышенной температуры (плавления). Реакция между натрием и жидким бромом протекает со взрывом, хотя она должна была бы идти более медленно, чем в атмосфере фтора или хлора. Это обс юятельство объясняется большей концентрацией молекул брома в жидком броме по сравнению с газообразными Fg и С . С иодом реакция идет только при нагревании. Рубидий п цезий в атмосфере чистого кислорода воспламеняются при обыкновенной температуре остальные металлы точно так же окисляются при обыкновенной температуре, в особенности во влажном воздухе, но для воспламенения требуют слабого подогревания. [c.233]

    Температуры плавления и кипения повыишются в сторону усложнения электронной оболочки атома от фтора к иоду. Фтороводород отличается от остальных водородистых соединений более высокими температурами плавления и кипения. Это можно объяснить тем, что молекулы жидкого фтороводорода полимеризованы за счет водородной связи, и состав их, вероятно, НзР.,. Плотность пара фтороводорода при температуре выше 70° С отвечает формуле НР, при 2Т она уже в 2,5 раза выще, что указывает на полимеризацию молекул в жидком состоянии они должны состоять из молекул НзРз- [c.598]

    Галогениды, отвечающие степеням окисления элементов +5 и выше, известны только для фтора (ЭР5, ЭРв, ЭРв). Эти фториды легкоплавки и летучи. Они представляют собой типичные молекулярные структуры, причем с повышением степени окисления элемента температуры плавления закономерно уменьшаются, что свидетельствует о нарастании ковалентного внутримолекулярного и ослаблении межмолекулярного взаимодействия. PtPe является сильнейшим окислителем, в то время как OsPo и даже OsP окислительными свойствами не обладают. Октафторид осмия гидролизуется с образованием OSO4  [c.422]

    V N -> О (Н) -> F. По этой причине соединения фтора являются ионными соединениями. В том же ряду увеличивается растворимость неметаллов вследствие уменьшения донорной способности и задержки структурных изменений, связанных с образованием соединения. Число электронов, участвующих в образовании связей неметалл — металл, уменьшается от углерода к кислороду, соответственно ослабляется связь. Это положение иллюстрируется уменьшением температуры плавления, которую можно рассматривать как качественную меру прочности связи при переходе от карбидов к окислам (табл. 57, рис. 67). Наиболее высокими температурами плавления обладают фазы со структурой типа Na l. [c.232]

    Соединения с галогенами. К галогенидам циркония и гафния относятся соединения различных типов — тетрагалогениды, продукты присоединения к ним, продукты замещения, галогеноцирконаты и гало геногафнаты, галогениды низших степеней окисления. Фториды весьма существенно отличаются от других галогенидов хлориды, бромиды и иодиды сходны между собой. Отличия фторидов обусловлены большой прочностью связей 2г — Р и НГ — Р, устойчивых в присутствии воды. В водных растворах существуют в зависимости от кислотности и концентрации ионов Р комплекс 1ые ионы [МеР ] " (где = 1 Ч- 6). Поэтому из них даже при низкой кислотности выделяются фторидные соединения, не содержащие гидроксо- и оксогрупп. Из-за малых размеров и низкой поляризуемости иона Р координационное число во фторидных соединениях циркония и гафния достигает 8, в остальных галогенидах оно не превышает 6. Соединения циркония и гафния со фтором имеют более высокие температуры плавления и сублимации, менее гигроскопичны, чем хлориды, бромиды и иодиды. В противоположность последним не известны фториды циркония и гафния низших степеней окисления [12, 151. [c.291]

    Кристаллохимическое строение всех галогенидов одинаково все они кристаллизуются в ГЦК-структуре типа Na L Поэтому температура плавления характеризует прочность химической связи. Для фторида лития наблюдаются резкое увеличение как температуры плавления, так и энтальпии образования. Здесь сказывается большая ОЭО атома фтора и малые размеры взаимодействующих атомов. Кроме того, фторид лития обладает малым сродством к воде плохо растворяется в ней и не образует кристаллогидратов. Все остальные галогениды лития гигроскопичны, хорошо растворяются в воде и образуют множество кристаллогидратов. [c.305]

    Из характеристических галогенидов AIF3 фторид по свойствам редко отличается ОТ своих гомологов, в том числе по энтальпии образования (см, рис. 138), температурам плавления и кипения. Аномально высокие значения указанных констант для AIF3 по сравнению с другими галогенидами объясняются большей ионностью этого вещества вследствие наибольшей ОЭО фтора. В отличие от других галогенидов алюминия его фторид в воде практически нерастворим. В результате гидролиза хлорид, бромид и иодид алюминия дымят на воздухе в парах они существуют в виде димеров А12Гв с мостиковыми связями  [c.335]

    В ряду элементов VIIA-группы наблюдается более или менее закономерное изменение физических и физико-химических характеристик атомов, ионов и гомоатомных соединений. От фтора к иоду возрастают температуры плавления, и кипения, энтальпии этих процессов, а также плотность. С ростом числа электронных слоев увеличйиаются размеры атомов и молекул следовательно, усиливаются дисперсионные си.(1Ы межмолекулярного притяжения, что ведет к возрастанию указанных характеристик. Прочность молекул от хлора к иоду уменьшается в соответствии с ростом межъядерных расстояний, степень перекрывания электронных облаков падает. Все это приводит к тому, что от хлора к иоду возрастает константа термической диссоциации молекул галогенов на атомы. [c.469]

    Как выяснилось, ксенон непосредственно может реагировать с фтором, образуя ХеГ2, ХеГ4, ХеРе, ХеРа. Фториды ксенона получают в жестких условиях (высокие температуры и давление, УФ-излучение, электрический разряд и т.п.), необходимых как для возбуждения атома ксенона, так и для диссоциации молекулы р2-Все кристаллы фторидов ксенона имеют молекулярное строение низкие температуры плавления (ХеРз 140°С Хер4 135°С ХеРе 50°С ХеРв — газ), склонность к сублимации. [c.486]


Смотреть страницы где упоминается термин Температура плавления фтора: [c.358]    [c.452]    [c.536]    [c.297]    [c.68]    [c.352]    [c.427]    [c.639]    [c.284]    [c.166]    [c.97]    [c.310]   
Перхлораты свойства, производство и применение (1963) -- [ c.81 ]

Перхлораты Свойства, производство и применение (1963) -- [ c.81 ]

Повышение эффективности контроля надежности (2003) -- [ c.81 ]




ПОИСК





Смотрите так же термины и статьи:

Температура плавления



© 2024 chem21.info Реклама на сайте