Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спирты определение иодометрическое

    Определение содержания изопропилового спирта. Определение основано на реакции окисления вторичных спиртов до кетонов. В качестве окислителя применяют раствор бихромата калия в кислой среде, расход которого определяют иодометрически (см. стр. 71). [c.68]

    Иодометрические методы широко применяют для определения многих органических веществ формальдегида, сахаров, ацетона, спиртов, азот- и серосодержащих соединений (семикарбазид, тиомочевина и т. д.) и др. В большинстве методик окисление органического вещества проводят в щелочном растворе, после окончания реакции раствор подкисляют и избыток иода оттитровывают тиосульфатом. Так, определяют, например, формальдегид  [c.280]


Таблица 4.2. Результаты иодометрического определения высших спиртов Таблица 4.2. Результаты <a href="/info/159531">иодометрического определения</a> высших спиртов
    Эту реакцию можно использовать для иодометрического определения сахаров. Альдегиды могут быть селективно окислены в щелочной среде до кислот одновалентным ионом серебра (в виде аммиаката) или двухвалентным ионом меди (в виде комплекса с винной кислотой — реактив Фелинга), причем названные ионы восстанавливаются соответственно до металлического серебра или закиси меди. Аммиачный раствор нитрата серебра и реактив Фелинга применяют поэтому для доказательства наличия альдегидной группы они не восстанавливаются спиртами и кетонами. Однако следует заметить, что кетозы восстанавливают реактив Фелинга так же, как и альдозы, поскольку в щелочной среде они легко перегруппировываются в альдозы и отчасти расщепляются до низших альдоз. [c.347]

    Сульфитный метод. Технический формальдегид (формалин) представляет собой 40 %-ный раствор формальдегида иногда содержит до 1 % и более метилового спирта. Определение чаще всего проводят сульфитным или иодометрическим методом. [c.195]

    Определение основано на том, что при действии окислителя этиловый спирт превращается в уксусную кислоту, а изопропиловый спирт в ацетон. В отгоне, полученном после окисления, ацетон определяют иодометрическим способом, основанным на реакциях [c.156]

    Борогидрид натрия восстанавливает альдегиды в соответствующие спирты, и этой реакцией можно воспользоваться для аналитического определения. Борогидрид натрия в избытке прибавляют к исследуемой пробе и непрореагировавший реактив определяют либо иодометрически [78], либо по объему выделившегося водорода [79]. Более новый метод заключается в прямом титровании альдегида борогидридом натрия с фотометрическим определением конечной точки титрования [80]. Недостатком всех этих методов, хотя и удобных, является их неспецифичность. Соединения многих других классов такл<е восстанавливаются реактивом и, следовательно, будут мешать определению. Чаще всего это оказываются кетоны и карбоновые кислоты. [c.121]


    Определение содержания изопропилового спирта. Определение ооновано на окислении смеси спиртов бихроматом калия в кислой среде. При окислении изопропилового спирта получают ацетон, который при перегонке пере- ходит в дистиллят. Ацетон определяют иодометрически. [c.58]

    Бромирование бутиндиола в метиловом спирте с последующим иодометрическим определением. [c.86]

    Определение можно закончить также объемным путем, бромированием связанного оксихинолина и последующим иодометрическим титрованием. Для этого осадок растворяют в горячей смеси 10 мл соляной кислоты и 10 мл этилового спирта, не содержащего примесей посторонних органических соединений, способных окисляться бромом.  [c.350]

    Метод основан на окислении спирта, извлеченного водой из хлористого или бромистого этила, двухромовокислым калием с последующим иодометрическим определением. [c.183]

    Большое число объемно-аналитических методов определения воды и спиртов основано на их реакциях с различными веществами, обычно органическими. В результате реакции образуются кислоты, которые можно затем титровать. Эти методы в отношении определения воды в настоящее время уже не имеют того значения, какое они имели до появления иодометрического метода К. Фишера тем не менее некоторые из них еще находят применение. [c.263]

    Получены хорошие результаты при определении ацетона с применением в качестве реактива солянокислого гидроксиламина и индикатора метилкрасного. Реактив (1—2 г) растворяют в конической колбе емкостью 200 мл в небольшом количестве воды и нейтрализуют по метилкрасному. Затем прибавляют анализируемое вещество и смесь титруют 0,1 н. раствором едкой щелочи. Автор считает, что для анализа проб, содержащих этиловый спирт или этилацетат, этот метод лучше, чем иодометрический метод. [c.281]

    Химические свойства. Гидроперекиси обладают более сильными кислотными свойствами, чем спирты. Так, с концентрированными растворами щелочей они образуют соли. В водной среде гидроперекиси являются окислителями, например, легко реагируют с иодистым водородом, выделяя при этом иод. Эта реакция использована для количественного иодометрического определения гидроперекисей  [c.189]

    В настоящее вр емя универсальным методом определения воды, принятым и узаконенным стандартами ряда стран, в том числе ГОСТ 11736—78, является метод иодометрического титрования— метод Фишера. Основным его преимуществом является высокая селективность реакции, положенной в основу метода. Традиционный реактив Фишера состоит из иода, диоксида серы, пиридина и метилового спирта. В этой системе взаимодействие реактива Фишера с водой представляет собой двухстадийную реакцию  [c.270]

    Резорцин (т. пл. 110°, т. кип. 281°) получается щелочным плавлением динатриевой соли бензол-л-дисульфокислоты. Плавление ведут в течение 8 часов при 320—330° с 5—6 молями едкого натра в условиях, исключающих доступ влаги. Продукт плавки растворяют в воде и отфильтровывают сульфит натрия. После подкисления фильтрата его кипятят для удаления двуокиси серы. Затем экстрагируют хорошо растворимый резорцин эфиром или амиловым спиртом в экстракторе непрерывного типа. После отгонки растворителя резорцин перегоняют в вакууме. Общий выход, считая на исходный бензол, около 80%. Характерной реакцией на резорцин служит образование флуоресцеина при нагревании с фталевым ангидридом и серной кислотой. Резорцин, подобно фенолу, образует трииодпроизводное и может быть количественно определен иодометрическим титрованием. [c.139]

    Своеобразно иодометрическое определение воды в органических растворителях и других материалах с помощью реактива Фишера, состоящего из иода, диоксида серы и пиридина в метаноле. Анализируемую пробу помещают в метиловый спирт и определяют воду титрованием указанным реактивом. Реакция титрования пр0 (0дит в две стадии. Упрощенно она может быть представлена схемой [c.281]

    Принимая во внимание, что продажный формалин содержит метиловый спирт, количество формальдегида, определенное по таблицам удельных весов, неточно (ср. Синт. орг. преп. , сб. 1, стр. 279). Содержание формальдегида в формалине определяют посредством анализа. Рекомендуется воспользоваться для этого иодометрическим методом Боргстрома и Хорша Выход вычисляют на основе действительного содержания формальдегида согласно анализу. [c.480]

    При определении по иодометрическому [11] и арсенометрическому (в спирте) методам содержания активного кислорода получено (в % от теоретического)  [c.228]

    Для определения содержания этилового спирта в крови пробу массой 1,000 г подкислили азотной кислотой и добавили 25,00 мл 0,02000 н. раствора КзСгдО (при этом этанол окислился до уксусной кислоты). Избыток дихромата оттитровали иодометрически, затратив 22,25 мл 0,02000 н. N828303 (/экв = ) Вычислить концентрацию (мг/л) СзНдОН в крови. [c.165]


    Метод отделения и гравиметрического определения содержания церия. Предложенный в 1940 г. Ю. А. Черниховым и Т. А. Успенской гравиметрический метод определения содержания церия в виде иодата еще не потерял своего значения. Р1з всех РЗЭ только Се (IV) осаждается из сильно азотнокислых растворов иодатом калия. Образующийся нерастворимый осадок 2Се(Юз)4-КЮз-8Н2О после промывания спиртом или эфиром можно высушить Й взвесить. Для определения содержания церия в осадке можно использовать его иодометрическое титрование. [c.198]

    Иодометрическое определение этилового спирта. В основе метода — принцип окисления этилового спирта Ka fjO, до уксусной кислоты [c.198]

    Косвенные иодометрические методы основаны на титровании серебра стандартным раствором иодида калия в присутствии (окислителей — перекиси водорода [1537], бихромата калия [1538], меди(П) [1412], иода [447, 1172]. Точка эквивалентности характеризуется появлением синего окрашивания адсорбционного соединения иода с крахмалом . Титрование можно проводить стандартным раствором K4[Fe( N)e] в присутствии иода и крахмала [434] или в отсутствие окислителей титрованием избытка иодид-ионов стандартным раствором соли двухвалентной ртути с 1-фенил-тиосемикарбазидом в качестве индикатора [176]. Иодометрический метод использован для определения содержания серебра(П) в комплексном соединении с дипиридилом состава [AgDip2](N03)2 [590]. Комплексы серебра(П) могут использоваться в качестве окислителей. Исследовано [1124] окисление органических соединений в воде, диметилсульфоксиде и в смеси диметилсульфоксида и диметоксиэтана пиколинатом серебра(И). Толуол окисляется в бензойную кислоту, фенилэтил — в ацетофенон, альдегиды превращаются в соответствующие кислоты, а первичные спирты — в альдегиды. [c.84]

    Однако оказалось, что прн анализе смесп перекисей раз-личного типа ограничиваться одним методом иодометрического анализа нельзя. Так, Рихе и Шмитц при работе с перекисями эфира для определения гидроперекиси применили раствор иодистого калия в уксусной кислоте и проводили анализ при комнатной температуре, а для определения перекисей использовали метод Салли. При определении перекисей, содержащих азот, Рихе, Шмитц и Байер использовали четыре варианта иодометрического метода 1) пробу в растворе иодистого калия и 2н. серной кислоты выдерживали 0,5 ч при комнатной температуре 2) такой же раствор кипятили с обратным холодильником в течение 10 мин 3) нагревали со смесью изопропилового спирта и уксусной кислоты и 4) пробу нагревали со смесью изопропилового спирта и концентрированной соляной кислоты до кипения. [c.432]

    Обычными примесями в винилалкиловых эфирах являются спирты, ацетальдегид, ацетали, ацетилен и вода в условиях иодометрического анализа они не оказывают влияние на определение эфиров. Предлагаемый метод особенно удобен для определения виниловых эфиров в присутствии ацеталей и ацетальдегида. Во всех описанных выше методах анализа виниловых эфиров, основанных на кислотном гидролизе и определении образующегося ацетальдегида, ацеталь реагирует одновременно с эфиром, и так как окончательно определяется ацетальдегид, то присутствие его в образцах виниловых эфиров представляет известные помехи. [c.395]

    Многие считают, что появление окраски связано с образованием адсорбционного комплекса, и это отчасти верно. Крахмалы состоят из двух основных частей, которые в разных растениях содержатся в различных пропорциях Одна из этих частей, амилоза, в большом количестве содержится в картофельном крахмале и представляет собой соединение с прямой цепью. Рандл и другие исследователи по данным иодометрического и рентгенографического методов установили, что амилоза с иодом образует синий комплекс определенной структуры. Особая форма амилозы, полученная осаждением из спирта, адсорбировала 26% от своей массы иода из паров, что соответствует одной молекуле иода на 6 остатков глюкозы или на единицу геликоидальной структуры крахмала. Вторая основная часть крахмала, амилопектин, имеет разветвленное строение и слабо взаимодействует с иодом, по-видимому путем адсорбции, с образованием продукта красно-пурпурного цвета. [c.434]

    От 1 до 2 мг 2г осаждают из 33%-ного раствора азотной кислоты в объеме 20—40 мл. Через 30—40 мин. осадок отфильтровывают через пористый стеклянный фильтр № 4, промывают разбавленным раствором иодата калия в азотной кислоте (8 г Оз и 30 лм конц. НЫОз в 1 л), затем 95%-ным этиловым спиртом и, наконец, эфиром Эфйр удаляют нагреванием до 45° С. Осадок растворяют в разбавленной соляной кислоте, а цирконий находят по количеству иодата, определяя последний иодометрически. Погрешность определения 1—2%. При содержании менее 1 мг 2г результаты бывают заниженными (примерно на 15%). Иодат калия нужно взять в не менее чем 15—20-кратном избытке. [c.76]

    За последнее время в объемном анализе расширяется применение смешанных растворителей. Еще в 1935 г. К. Фишер предложил метод иодометрического определения воды путем титрования анализируемого образца в среде метилового спирта СН3ОН. Этот метод приобрел за последнее время большое распространение. Установлено, что добавление ацетона или спирта к раствору, в котором производится титрование методом осаждения, понижает растворимость осадков. Таким образом, титрование в смешанном растворителе позволяет полнее осадить вещество и более точно установить точку конца титрования. Применение смешанных растворителей оказалось весьма важным в методах нейтрализации или протолиза, в этом случае константы диссоциации кислот и оснований оказываются значительно меньшими, чем в водной среде. Например, какую-нибудь аммонийную соль в водном растворе нельзя точно оттитровать гидроокисью натрия или калия. Это зависит от того, что вблизи точки эквивалентности диссоциация NH4OH довольно велика. Однако, если проводить титрование в смешанном растворителе, содержащем только 10% воды и 90% этилового спирта, и подобрать соответствующий индикатор, то аммонийную соль можно точно оттитровать едкой щелочью. Нужно помнить, что константа диссоциации индикатора изменяется в этих условиях. Поэтому изменяется и гЛэложение интервала изменения окраски индикатора. [c.416]

    Ацетон и этиловый спирт. В цилиндре с притертой пробкой энергично взбалтывают 5 мл метилового спирта с 50 мл двунормального раствора едкого натра. После этого, также при взбалтывании, вводят 25 мл двунормального раствора иода не должно быть ни мути, ни хлопьевидного осадка, ни появления запаха йодоформа. Определение ацетона в метиловом спирте иодоформенным методом, при котором этиловый спирт, если он присутствует, также определяется как ацетон, изложено при ацетоне (стр. 268). Что касается иодометрического определения малых количеств ацетона в метиловом спирте, то исследования, произведенные I. О., показали, что даже наиболее чистый, свободный от ацетона метиловый спирт реагирует с щелочным раствором иода. Количество иода, потребляемое самим метиловым спиртом, тем больше, чем выше температура среды это приводит нередко к определениям несуществующего ацетона. Если, например, смешать 10 мл свободного от ацетона метилового спирта с 20 мл нормального раствора едкого натра, то наблюдается доходящее иногда до 10° повышение температуры. Такой теплый раствор при прибавлении йодного раствора связывает заметные количества иода, которые затем, при подкислении соляной кислотою, уже больше не выделяются. Поэтому надо работать при возможно низких температурах, лучше всего от +5° ДО в этом температурном интервале реакция между метиловым спиртом и иодом ничтожна. В связи с этим рекомендуется следующая техника определения  [c.237]


Смотреть страницы где упоминается термин Спирты определение иодометрическое: [c.225]    [c.498]    [c.197]    [c.429]    [c.429]    [c.124]    [c.230]    [c.280]    [c.567]    [c.475]    [c.564]    [c.490]    [c.537]    [c.538]    [c.172]    [c.175]    [c.475]    [c.382]   
Количественный органический анализ по функциональным группам (1983) -- [ c.217 ]




ПОИСК





Смотрите так же термины и статьи:

Иодометрически по М о h гу

Иодометрические определения

иодометрическое



© 2024 chem21.info Реклама на сайте