Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Потенциалы полуволн полярографического восстановления органических соединений

    Аналитическое применение электровосстановления и электроокисления основано на полярографической методике. Каждое способное к восстановлению органическое соединение характеризуется, при достаточно высокой концентрации проводящего фона, определенной для данной среды и температуры величиной потенциала полуволны Ег/ . Эти потенциалы, как и упомянутые выше потенциалы восстановления и окисления., во многих случаях в существенной мере зависят от pH среды. Однако при постоянстве условий они служат полезной качественной характеристикой каждой способной к восстановлению группы в данном соединении .  [c.405]


    Особое значение имеет величина концентрации ионов водорода при полярографировании органических соединений, потенциал восстановления которых определяется не только их природой, но и в значительной мере кислотностью раствора. Это связано с тем, что в большинстве случаев в реакции восстановления молекул органических веществ принимают участие ионы водорода. Примером может служить восстановление нитробензола, примесь которого в техническом анилине определяется полярографическим методом (см. стр. 270). В кислой среде электрохимическому восстановлению нитробензола (при pH 2) соответствует потенциал полуволны в]/2 = —0,15 в, а в нейтральной Е /2 = = —0,47 в. Повышение кислотности сдвигает потенциал полуволны в сторону его менее отрицательных значений. [c.244]

    Различием в механизме восстановления органического вещества на металлах первой и второй групп обусловливается и различная восстановительная способность металлов. На металлах первой группы восстанавливаются преимущественно малополярные соединения, способные восстанавливаться водородом каталитически. На металлах второй группы, напротив, восстанавливаются преимущественно соединения, обладающие достаточной полярностью, причем чем больше величина дипольного момента восстанавливаемого соединения, тем легче оно восстанавливается на металлах с высоким перенапряжением водорода. Легкость, с которой органические вещества подвергаются электровосстановлению на металлах второй группы, обычно характеризуется величиной потенциала полуволны, определяемой полярографически. [c.84]

    В настоящей работе проведено полярографическое исследование некоторых смешанных органических соединений олова, сурьмы, свинца и висмута с целью выяснения влияния различных органических радикалов и числа их в молекуле на потенциал полуволны и характер восстановления смешанных металлорганических соединений на ртутном капельном электроде. [c.210]

    Из уравнений (1-58) — (1-62) следует, что с ростом pH раствора величина предельного кинетического тока уменьшается, стремясь к нулю, а потенциал полуволны становится отрицательнее, причем с уменьшением отношения /пр//д величина Д /./ДрИ уменьшается, стремясь к нулю [131]. При понижении же pH раствора или увеличении его протонодонорных свойств величина предельного кинетического тока, как видно из уравнения (1-58), ас-симптотически приближается к /д, приобретая при этом характерные свойства предельного диффузионного тока. Однако, если р/Са<СрН, то на потенциал полуволны все еще продолжает оказывать влияние предшествующая переносу электронов реакция протонизации и зависит от pH раствора, поэтому такие волны получили название квазидиффузионных [132]. По-видимому, большинство полярографических волн восстановления органических соединений, Еу которых зависит от pH раствора, являются квазидиффузионными собственно электрохимической стадии их электродного процесса предшествует протонизация деполяризатора [57, 133]. Нетрудно видеть, что в средах, в которых рКа деполяризатора меньше pH раствора, величина Д /ДрН объемных квазидиффузионных волн равна —2,3 НТ аПеР [см. уравнение (1-59), в котором в этом случае /пр//д=1]- [c.46]


    Значительный прогресс органической полярографии позволяет пользоваться этим методом все шире не только в исследованиях аналитического характера, но и для решения отдельных проблем структурной химии [1 —3]. Установление принципа необходимости измерения потенциалов полуволны (Еад) рззличных органических соединений в строго идентичных условиях (растворитель, pH среды, температура, концентрация соединения и т. д.) для возможности сравнения экспериментальных данных привело к ряду эмпирических закономерностей, связывающих потенциал восстановления определенной функциональной группы и распределение электронов в молекуле. Важное значение имеет также выяснение механизма электродных реакций восстановления отдельных полярографических активных групп (карбонильная группа, нитрогруппа) — характера потенциалопределяющей стадии, конечных продуктов восстановления и промежуточных образований свободнорадикального типа [4-7]. [c.63]

    Полярографический метод может дать также некоторое представление о строении молекул органических соединений, характере функциональных групп и заместителей и их взаимном расположении. Известно, что между природой заместителей и сдвигом потенциала полуволны органического соединения существует определенная связь. Так, введение в ацетон фенильного радикала облегчает восстановление в большей степени, чем замещение водорода метильным радикалом. Карбоксильная группа, введенная в бензольное ядро нитробензола, смещает потенциал восстановления нитрогруппы в положительную сторону больше, чем гидроксильная группа или атомы хлора. При полярографировании динитробензола легче всего восстанавливается п-динитро-бензол, а труднее всего — -динитробензол. Восстановление карбонильной группы в альдегидах облегчается наличием в молекуле сопряженных двойных связей акролеин СНг = СИ—СНО восстанавливается легче пропионового альдегида СН3СН2СНО и т. п. [c.225]

    Наиболее тщательно к корреляции частот ЯКР и данных полярографии подошли Колдуэл и Хакобиан [53]. Они полагают, что для иодсодержащих соединений полярографическое восстановление проходит через две ступени Н — I + е" Т (переходное состояние) медленная стадия Т + е" + Н+ — Н + I кинетическая стадия. Поскольку определяет величину потенциала полуволн стадия переноса электрона и образования Т", которая не зависит от pH электролита, органические иодсодержащие соединения весьма удобны для изучения влияния заместителей на атом йода методом полярографии. Было найдено [53], что потенциалы полуволн восстановления для иодбензолов и иодистых алкилов образуют разные зависимости с частотами ЯКР (рис. 6-14). Это находится в полном согласии с тем, что для иодзамещенных бензола и иодистых алкилов ап (где а — коэффициент переноса О < а < 1 — число электронов, принимающих участие в медленной стадии электрохимического процесса) имеет различные значения 0,56 0,04 и 0,30 0,04 соответственно. В каждой из этих зависимостей была найдена ожидаемая зако- [c.120]

    Величина потенциала полуволны при строгом соблюдении постоянных условий электролиза обусловливается наличием и природой функциональных групп или заместителей, способных к электровосстановлению (или электроокислению) в пределах напряжений, возможных при полярографировании. Пределы напряжений лимитируются природой и свойствами микроэлектрода и фона. Для капельного ртутного электрода эти пределы составляют для окисления +0,646 в и для восстановления —2,7 в (при использовании в качестве фона тетраалкиламмонийных солей). Вещества, потенциалы восстановления (или окисления) которых лежат вне этих пределов, не могут быть определены полярографически на капельном ртутном электроде. Ниже дана краткая полярографическая характеристика наиболее важных классов органических соединений. Рассмотрены только соединения с одноатомными функциями, так как наличие в веществе двух функций или заместителей зачастую сильно меняет полярографическую характеристику вещества. Например, полярографически неактивная изолированная двойная связь в сочетании с полярографически неактивной нитрильной группой в а-положении к двойной связи образует полярографически активную систему акрилонитрила . Наоборот, сочетание полярографически активного хлора с полярографически неактивной нитрильной группой дает полярографически неактивную систему СЮНоСН-зСМ .  [c.27]

    Практически установлено, что разные классы органических веществ образуют полярографические волны в определенных областях потенциалов [1], что позволяет сразу же по значению потенциала полуволны на полярограмме судить о наличии в нем органических соединений с определенными функциональными группами. Как правило, эти данные имеют приближенный характер, так как на значение потенциала полуволны, кроме природы функциональной группы и фона, могут оказывать влияние другие функциональные группы, имеющиеся в молекуле исследуемого вещества, значение pH, состав полярографируемого раствора, наличие в нем поверхностно-активных веществ и другие факторы. Поэтому всегда следует наряду с определением области потенциалов восстановления для уточнения природы вещества в растворе, дающего волну, использовать некоторые дополнительные приемы, например изучение влияния на полученные полярографические волны добавок реагентов, с которыми предполагаемые вещества могут взаимодействовать и тем самым изменять характер полярограмм. Так, при добавке в раствор, содержащий формальдегид, димедона волна формальдегида исчезает [15], в то время как волны других альдегидов остаются практически неизменяемыми. [c.298]


    За последние 9—10 лет отмечены значительные успехи в области полярографии органических соединений. В развитии полярографии за этот периЬд времени наметились три направления новое толкование результатов предыдущих работ изучение процессов восставовлеция и окисления новых типов органических соединений применение полярографического метода для количественных определений и разрешения вопросов, связанных с изучением строения и синтеза орган еских соединений. Полярографические исследования в большинстве случаев стали выполняться более тщательно и более полно, чем в предыдущие годы в качестве общепринятого стандарта измерений применяется потенциал полуволны. Однако еще уделяется мало внимания изучению механизма восстановления и получаемых при восстановлении продуктов в случаях необратимых систем. Имеется тенденция сводить все объяснения исключительно к установлению числа электронов, расходуемых на восстановление, не вдаваясь в подробности химического превращения молекул. Очень часто в качестве окончательных продуктов реакции принимаются без всякого полярографического изучения такие соединения, которые способны восстанавливаться далее. Большая часть исследований выполнялась в средах, представляющих собой смеси воды и органического растворителя. В неводных средах, таких как уксусная кислота [5], формамид, этиловый спирт, метиловый спирт, глицерин [141] и этиленгликоль [c.55]

    Еще большее значение в цолярографии органических соединений имеет действие растворителя на потенциал полуволны. Характер этого влияния опять-таки может быть предсказан на основании потенциометрических данных. Нанример, при pH, равном нулю, Конант и Физер [95] нашли потенциал хингидрона, равный 0,699 в в водном растворе и 0,711 в в 50 или 95%-ном спиртовом растворе. Полярографические данные, полученные в водном растворе [73] и в 50%-ном растворе метилового спирта [96], находятся в полном согласии с этими данными. В том случае, когда процесс восстановления идет через образование семихинонов, можно также ожидать значительного влияния растворителя, принимая во внимание потенциометрические данные Бурштейна и Давидсона [97]. Согласно Мюллеру [82], повышение температуры или добавление этилового спирта к раствору ведет к уничтожению аномальной волны (стр. 511). [c.522]


Смотреть страницы где упоминается термин Потенциалы полуволн полярографического восстановления органических соединений: [c.236]    [c.511]   
Справочник химика Том 3 Изд.2 (1965) -- [ c.936 , c.995 , c.998 ]

Справочник химика Том 3 Издание 2 (1964) -- [ c.936 , c.995 , c.998 ]

Справочник химика Изд.2 Том 3 (1964) -- [ c.936 , c.995 , c.998 ]




ПОИСК





Смотрите так же термины и статьи:

Органические восстановление

Органические полярографическое

Потенциал восстановления

Потенциал полуволны



© 2024 chem21.info Реклама на сайте