Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Органические восстановление

    Под химической коррозией подразумевается прямое взаимодействие металла с коррозионной средой, при котором окисление металла и восстановление окислительного компонента среды протекают в одном акте. Такая кор-ро ия протекает по реакциям, подчиняющимся законам химической кинетики гетерогенных реакций. Примерами химической коррозии являются газовая коррозия выпускного тракта двигателей внутреннего сгорания (под действием отработавших газов) и лопаток турбин газотурбинного двигателя, а также коррозия металлов в топливной системе двигателей (за счет взаимодействия с находящимися в топливах сероводородом и меркаптанами). В результате окисления масла в поршневых двигателях могут образовываться агрессивные органические вещества, вызывающие химическую коррозию вкладышей подшипников [291]. Можно привести и другие примеры. Однако доля химической коррозии в общем объеме коррозионного разрушения металлов относительно мала, основную роль играет электрохимическая коррозия, протекающая, как правило, со значительно большей скоростью, чем химическая. [c.279]


Таблица 21.1. Избирательное восстановление органических соединений на различных катодах Таблица 21.1. Избирательное <a href="/info/305835">восстановление органических соединений</a> на различных катодах
    Реакции электрического окисления и восстановления включают в себя широкий круг процессов от простейшей ионной перезарядки до сложных превращений, лежащих в основе органического электросинтеза. Процессы электрохимического восстановления и окис- [c.428]

    Окисление химическими реагентами [5.3, 5.35, 5.55, 5.57, 5.64, 5.70]. Окисление неорганических и органических соединений широко используется в промышленной практике при переработке и обезвреживании отходов. Для очистки сточных вод применяются следующие окислители хлор и его соединения, перманганат натрия, бихромат калия, кислород воздуха, озон, перекись водорода и др. Выбор окислителя определяется экономическими показателями и зависит от количества и состава сточных вод, наличия окислителей и требуемой степени очистки. Применение перманганата и бихромата калия, нитрита и нитрата натрия нецелесообразно— усложняется технологическая схема вследствие необходимости удалять избыток окислителей и продуктов их восстановления. [c.493]

    Изучение водородного перенапряжения позволяет выяснить механизм этой реакции и представляет большой интерес с теоретической точки зрения. Установленные при этом закономерности можно частично распространить и на другие электрохимические реакции, что значительно повышает теоретическую значимость работ по водородному перенапряжению. Изучение водородного перенапряжения имеет также большое практическое значение, потому что современная промышленная электрохимия является преимущественно электрохимией водных растворов, и процессы электролитического разложения воды могут накладываться на любые катодные и анодные реакции. Водородное перенапряжение составляет значительную долю напряжения на ваннах по электролизу воды и растворов хлоридов. Знание природы водородного перенапряжения позволяет уменьшить его, а следовательно, снизить расход электроэнергии и улучшить экономические показатели этих процессов. В других случаях (электролитическое выделение металлов, катодное восстановление неорганических и органических веществ, эксплуатация химических источников тока) знание природы водородного перенапряжения позволяет успешно решать обратную задачу — нахождение рациональных путей его повышения. Все эти причины обусловили то, что изучение процесса катодного выделения водорода и природы водородного перенапряжения всегда находилось и находится в центре внимания электрохимиков. [c.397]


    Амины, полученные восстановлением продуктов нитрования без предварительного отделения нейтрального масла, могут быть легко от него освобождены это достигается обработкой аминов рассчитанным количеотвом соляаой или серной кислоты и извлечением полученных солей аминов разбавленным метанолом при встряхивании. Избыток минеральной кислоты вызывает выделение солей аминов из водных растворов в виде масел. Эти масла растворимы в углеводородах и эмульгируют их при прибавлении воды. Соли аминов с органическими кислотами также растворимы в воде при избытке кислоты. Высокомолекулярные амины могут быть превращены в алкилированные аминокислоты действием хлоркарбоновых кислот. Особенно просто получают алкиламиноуксусные кислоты. В виде натриевых солей при подходящей длине алкильной группы они обладают прекрасными моющими свойствами  [c.346]

    Вода расщепляется на элементы, что создает источник атомов водорода для восстановления СО2 в глюкозу, а нежелательный газообразный кислород выделяется в атмосферу. Энергия, необходимая для осуществления этого в высшей степени несамопроизвольного процесса, обеспечивается солнечным светом. В наиболее древних формах бактериального фотосинтеза в качестве источника восстановительного водорода использовались не вода, а сероводород, Н28, органические вещества или сам газообразный водород, но легкая доступность воды сделала этот источник наиболее удобным, и в настоящее время он используется всеми водорослями и зелеными растениями. Простейшими организмами, в которых осуществляется фотосинтез с высвобождением О2, являются сине-зеленые водоросли. Их правильнее называть современным названием цианобактерии, поскольку это в самом деле бактерии, научившиеся добывать собственную пищу из СО2, Н2О и солнечного света. [c.335]

    Каждая молекула НАД Н независимо от своего происхождения поступает на третью стадию метаболического процесса-окончательный цикл окисления, или дыхательную цепь,-и образует три молекулы АТФ. Каждая молекула ФАД Hj принимает участие в промежуточной части этой стадии и образует только две молекулы АТФ. Дыхательная цепь включает ряд флавинсодержащих белков (флавопротеидов) и цитохромов (рис. 20-23), с которыми взаимодействуют атомы водорода и электроны, образуемые из НАД Н и ФАД Н2, до тех пор пока они в конце концов не восстанавливают О2 в Н2О. Компоненты дыхательной цепи показаны на рис. 21-24. При повторном окислении НАД Н два атома водорода используются для восстановления флавопротеида, а выделяемая свободная энергия используется для синтеза молекулы АТФ из АДФ и фосфата. Флаво-протеид снова окисляется, восстанавливая небольшую органическую молекулу хинона, известного под названием убихинона, или кофермента Q. С этого момента судьбы электронов и протонов восстановительных атомов водорода расходятся. Электроны используются для восстановления атома железа в цитохроме Ь из состояния Fe в состояние Fe а протоны переходят в раствор. Цитохром Ь восстанавливается в цитохром с,. [c.330]

    При данном значении потенциала электрода скорость процесса электролитического восстановления (или окисления) обычно растет с увеличением концентрации разряжающи.хея частиц. Однако такая простая зависимость наблюдается не всегда. В кинетических уравнения.ч, описывающих реакции электровосстановления (или электроокисления), концентрации исходных веществ могут входить со степенями, большими единицы, равными нулю или правильной дроби. В уравнеиия, описывающие кинетику электровосстановления органически.х соединений, их объемная концентрация в.ходит обычно в дробной степени. [c.434]

    НЫХ восстанавливающих агентов (природа которых связана с природой замедленной стадии выделения водорода на данном металле) позволяет истолковать значительное число опытных данных. В частности, она дает возможность объяснить существование избирательного электровосстановления (см. табл. 21.1). По-видимому, восстановление органических соединений на платиновых и никелевых катодах совершается за счет адсорбированных атомов водорода, присоединяющихся к неполярным связям (типа двойных или тройных связей) между углеродными атомами. На катодах из ртути и свинца восстановление совершается за счет ионов водорода, присоединяющихся с большей легкостью к отрицательным полярным группам (типа карбонильных или карбоксильных групп). [c.441]

    Особенность восстановления при участии сольватированных электронов связана с весьма отрицательным значением их стандартного потенциала, сравнительно мало отличающегося от стандартных потенциалов щелочных металлов. Поэтому сольватированные электроны способны реагировать с очень трудно восстанавливаемыми соединениями и инициировать полимеризацию, К настоящему времени накоплен большой фактический материал по восстановлению сольватированными электронами неорганических и о )ганических веществ, указывающий на образование необычных продуктов восстановления, на селективность восстановления. Собраны многочисленные данные препаративного характера и по формальной кинетике, однако еще весьма слабо изучено на молекулярном уровне взаимодействие в системе органическое вещество — протонодонорная добавка (или среда)—сольватированный электрон. На этом пути можно ожидать получения весьма интересных результатов. [c.445]


    Полярографический метод основан на восстановлении анализируемого соединения на ртутном капельном электроде и применяется для определения следовых количеств соединений в жидких средах. Используются полярографы ППТ-1, ПУ-1, ПЛ-2, ПА-3, ПО-5122 с чувствительностью определения органических и неорганических соединений от 0,05 до 1 мкг/мл пробы. [c.26]

    НО, И поверхностная концентрация восстанавливаемого вещества. Условия восстановления на платине еще менее благоприятны, так как при выбранном потенциале —0,8 В ее ф-потенциал, равный —0,8—( + 0,2) =—1,0 В, лежит уже за пределами заметной адсорбции органического вещества . При электровосстановлении ацетона в кислой среде выход по току падает в ряду свинец, цинк, [c.448]

    Карбонилы d-элементов (табл. 49) — жидкости или кристаллические вещества, хорошо растворимые в органических растворителях. Как и СО, они чрезвычайно токсичны. Термическим разложением карбонилов получают чистейшие металлы. Кроме того, их используют в химическом синтезе. Карбонилы металлов синтезируют различными способами. Никель, железо и кобальт Н посредственно реагируют с оксидом углерода (II), давая карбонилы. Обычно же их получают восстановлением соответствующих солей или комплексов металлов в присутствии СО. [c.552]

    Автотрофные организмы получают всю серу и азот, содержащиеся в клетке, из неорганических соединений. Автотрофное усвоение неорганических соединений серы и азота широко распространено в природе. Этой способностью обладают высшие зеленые растения, папоротники и мхи. Кроме того, известно, что многие водоросли, грибы и бактерии могут расти на среде, содержащей в качестве единственного источника серы сульфаты и в качестве единственного источника азота нитраты, аммиак и даже N2. Среди огромного разнообразия живых существ можно найти организмы, которые составят непрерывный ряд от полной автотрофности до почти полной гетеротрофности. Например, млекопитающие должны получать весь азот в виде органических соединений и почти всю серу в виде органических восстановленных соединений. Однако, как показали чрезвычайно интересные с эволюционной точки зрения исследования, проведенные с 8 -сульфатами, ткани эмбрионов высших животных обладают некоторой, хотя и ограниченной, способностью к восстановлению сульфатов и фиксации восстановленной серы с образованием цистеина. По-видимому, использование чувствительных методов с применением изотонов покажет, что полная гетеротрофность имеет место лишь в очень редких случаях. Все дело в том, соот- [c.274]

    В СССР первые установки по каталитическому восстановлению оксидов азота введены в эксплуатацию в 1965 г. На многих химических предприятиях была реализована схема каталитического восстановления оксидов азота с применением природного газа, разработанная Государственным научно-исследовательским и проектным институтом азотной промышленности и продуктов органического синтеза (ГИАП). Катализатором служит палладий, нанесенный на активный оксид алюминия. Тепло, выделяющееся в процессе восстановления, можно использовать в газовых турбинах для получения дополнительной энергии, что улучшает экономические показатели процесса очистки. [c.65]

    Ионные механизмы, обсуждавшиеся для случаев реакций органических веществ, связаны с переносом атомов или ионов в отдельных стадиях. 15 зависимости от заряда переносимой частицы некоторые из этих стадий формально могут соответствовать отдельным стадиям в реакциях окисления или восстановления. Но ни одна из этих реакций не соответствует простому обмену зарядами путем переноса электронов. [c.503]

    Самый поверхностный слой ила мощностью от нескольких миллиметров до десятков миллиметров носит название контактного. Вблизи своей поверхности этот слой имеет жидковатую консистенцию и коричневатый цвет, далее вглубь он приобретает серый цвет и делается более плотным. Такое раздвоение контактного слоя — явление характерное, широко распространенное. Оно отмечено, например, в донных осадках Северного Ледовитого океана М. В. Кленовой 1 и т. д. Разница в цвете обусловлена, по-видимому, тем обстоятельством, что при разложении органического вещества восстановительные процессы, происходящие в нижних горизонтах слоя, захватывают и содержащееся в организмах железо, переводя окисные его формы в закисные. В отличие от этой внутренней зоны восстановления , верхняя получила название зоны окисления . [c.337]

    Катодное восстановление используется при очистке сточных вод, содержащих трудноокисляемые органические соединения или ионы металлов РЬ +, 50 +, Hg2+, Сц2+, As +, Сг +, причем металлы осаждаются на катоде и могут быть рекуперированы. Например, при восстановлении соединений хрома концентрация его в воде снижалась с 1000 до 1 мг/л. [c.495]

    ПО заряженных частиц (рис. 15,1, а) их доставка к катоду будет осуществляться миграцией, диффузие ) и конвекцией, потоки которых направлены в одну и ту же сторону. При восстановлении анионов (рис. 15.1,6) их доставка к катоду осуществляется диффузией и конвекцией миграция анионов, наоборот, отводит их от иоверхности электрода. При восстановлении незаряженных частиц (рис. 15.1, в) миграция вообще отсут твует. При анодном окислении доставке катионов к электроду будет противодействовать миграция транспортировка анионов обеспечивается миграцией, диффузней и конвекцией, а ирн окислении органических веществ — диффузией и конвекцией. [c.303]

    При добавке к триметиленхлориду небольших количеств иодистого натрия восстановление цинковой пылью протекает значительно быстрее. Это объясняется тем, что иод частично взаимодействует с органическим хлоридом, превращаясь в органический иодид, который весьма быстро реагирует с цинковой пылью  [c.215]

    Для восстановления галоидопроизводных готовится магний-органическое соединение, которое да.тее разлагается водой (Гриньяр). [c.41]

    Электролитические методы получения металлов (алюминия, магния) из солевых расплавов, получение газообразного хлора и раствора щелочи электролизом растворов поваренной соли, производство персульфата, перхлората и перманганата, окисление и восстановление органических веществ (получение йодоформа, электрохлорирование бензола, электровосстановление нитробензола) и многие другие технические применения электролиза приобретают все большее значение. [c.606]

    Перманганат всегда содержит примеси продуктов восстановления, например МпОг. Кроме того, он легко разлагается под влиянием восстановителей — аммиака, органических веществ, попадающих в воду с пылью, и т, п. Вследствие этого концентрация раствора КМПО4 в первое время после приготовления не-СК0Л1К0 уменьшается. [c.379]

    При проведении фотометрической реакции, необходимой для повышения чувствительности, определяемый компонент переводят в соединение, обладающее значительным поглощением. Чаще всего определяемое вещество связывают в комплексное соединение с различными органическими реагентами. Кроме того, могут быть использованы реакции окисления — восстановления, диазосочетания и доугие. [c.480]

    Подобных же отклонений от ПНПСР следует ожидать и в других случаях. Например, при протекании реакций электровосстановления или электроокисления, когда изменение кинетики частных реакций может быть обусловлено не только химическим взаимодействием их продуктов, но и иными причинами. Так, если восстанавливаемое соединение или продукт его восстановления способны адсорбироваться на электроде, то перепапряжение водорода может существенно измениться по сравнению с чистым раствором (не содержащим органического вещества) при той же плотности тока (или неизменная величина потенциала электрода будет соответствовать разным значениям плотности тока). Тем не менее и здесь оба принципа — ПНПСР и ПСПК — оказываются полезными, так как позволяют получать дополнительные сведения о процессе протекания совмещенных реакций. [c.389]

    Из металлов первой электрохимической группы наиболее полно изучена платина, хотя из-за высокой чувствительности ее водородного потенциала к примесям полученные данные не отличаются хорошей воспроизводимостью. Н( сомненно, что в области положительных потенциалов (не очень удаленных от обратимого потенциала водородного электрода) на поверхности платины всегда присутствует адсорбированный водород. Это установлено измерением мкости, а также другими методами. Так, количество адсорбированного водорода можно найти для каждого значения потенциала при помощи кривых заряжения, т. е. кривых, передающих изменение потенциала электрода с количеством подведенного электричества чли (при постоянной силе тока) с течением времени. При таком кулонометрическом определении количества водорода (или иного электрохимически активного вещества) необходимо, чтобы его выделение (или растворение) совершалось со 100%-ным выходом по току. Все возможные побочные реакции — электровосстановление или выделение кислорода, катодное восстановление или анодное окисление органических веществ и других примесей — должны быть полностью исключены. Этого можно достичь двумя методами. В первом из ннх сила накладываемого на ячейку тока настолько велика, что значительно превосходит предельные токи восстановления и окисления примесей их вредное влияние поэтому не проявляется. Заряжение электрода проводят с большой скоростью, а кривую заряжения регистрируют автомати- [c.414]

    Влияние материала электрода иногда приписывают только величине перенапряжения водорода на нем. Действительно, на металлах с высоким водородным перенапряжением реакции восстановления часто идут полнее. Кроме того, на таких электродах легче могут быть достигнуты потенциалы, при которых происходит носстановление трудно восстанавливаемых соединений. Однако в общем случае прямого параллелизма между водородным перенапряжением на электродном материале (его катодным потенциалом) и его активностью по отношению к реакциям электровосстановления не существует. Более того, оказывается, что некоторые соединения лучше восстанавливаются на катодах с низким перенапряжением и хуже или даже вообще не восстанавливаются на металлах с высоким водородным перенапряжением. Такое избирательное электровосстановление органических соединений представляет собой распространенное явление (Л. И. Антропов, 1951). Примеры избирательного восстановления приведены в табл. 21.1. На катодах с низким перенапряжением — платине и никеле (особенно в форме черни или губки) —преимущественно восстанавливаются изолированные ненасыщенные связи в органических соединениях жирного ряда и двойные связи в бензольном кольце. В то же время эти связи практически ке гидрируются на катодах, обладающих высоким водородным перенапряжением, таких, например, как ртуть или свинец. Напротив, полярные группы — карбонильная и карбоксильная — восстанавливаются на катодах с высоким перенапрям ением водорода и не затрагиваются на катодах с низким перенапряжением. Исключение составляют нитро- и нитрозо- [c.432]

    Ионы металлов переменной валентности как восстанавливающие и окисляющие агенты. Три )ассмотреиных варианта не исчерпывают всех во Можных иутсЙ нротекания окислительно-восстановительных реакций. В роди восстановительных (или окислительных) агентов могут выступать также находящиеся в растворе коны металлов. В этом с.лучае электродный процесс сводится к окислению (или восстановлению) ионов металлов переменной валентности, которые затем восстанавливают (или окисляют) органическое соединение. В качестве при у1сра можно указать на электроокисление суспензии антрацена. При проведении электролиза такой суспензии иочти весь ток на аноде расходуется на выделение кислорода. Если, однако, добавить к ней немного солен церия, хрома или марганца, то на аноде наряду с кислородом появится также антрахинон. Реакция идет, по-видимому, следующим образом ионы металла, наиример церия, окисляются на аноде [c.443]

    Появление сольватированных электронов переносит зону электрохимической реакции восстановления с границы раздела электрод — электролит в раствор, т. е. превращает ее из поверхностной, гетерогенной, в объемную, гомогенную, реакцию, с катодно генерируемым восстанавливающим агентом. В связи с этой основной особенностью нового механизма восстановления роль транспортных ограничений становится несущественной реакция теперь не локализована в определенном месте, а распределена в объеме подвижность электронов выше, чем большинства других частиц кроме того, появление электронов в растворителе приводит к возникновению градиента плотности, а следовательно, к конвективному перемешиванию объема раствора, примыкающего к катоду. Эта особенность оказывается наиболее существенной в случае электровосстановления труднорастворимых органических соединений, которые при обычных условиях из-за крайне медленной доставки восстанавливаются с ничтожными выходами. В водных средах для ускорения подобных процессов применяются медиаторы потенциала — ионные редокси-пары, которые переносят мектроны от катода к восстанавливаемым частицам или от окисляющихся частнц к аноду, а затем сами восстанавливаются или окисляются на соответствующих электродах. Эффективность восстановления сольватированными электронами должна быть существенно выше, чем при применении медиаторов по уже указанным ранее причинам, а также потому, что ионам медиатора приходится проходить двойной путь — до реакции с частицей и после иее. Действительно, найдено, что токи генерации сольватиро-вапных электронов больше чем на три порядка превышают токи диффузии органических соединений к катоду. [c.444]

    Восстановление [5.3, 5.24, 5.55, 5.64]. Восстановление неорганических и органических соединений с изменением их валентности или структуры широко используется как одна из стадий подготовки отходов к переработке и обезврех<иванию. Используя соли Ре (И), NaHSOa, НазЗОз, шестивалентный хром восстанавливают до трехвалентного, который затем в виде Сг(ОН)з выделяют из [c.492]

    Наиболее широкое распространение процессы аминнрования получили в производстве промежуточных продуктов и органических красителей, при этом аминосоединения чаще всего образуются в результате восстановления нитросоёдинений. Для восстановления последних применяют железо в присутствии растворов электролитов, цинк, сернистую кислоту, иодистый водород, сульфиды, водород и др. Широкое распространение нашел способ получения аминопроизводных с применением аммиака, [c.119]

    Процесс сухой очнстки от сероводорода активным углем основан на окислении сероводорода до элементарной серы кислородом на поверхности активного угля. Образующаяся при очистке элементарная сера отлагается в порах угля по мере заполнения поверхности угля серой процесс очистки замедляется и прекращается. Для восстановления поглотительной способности угля его промывают раствором сернистого аммония. После промывки и пропарки активный уголь вновь пригоден для очистки газа. Каталитическая очистка газа протекает в две ступени на первой ступени на катализаторе при подаче пара или водорода органические соединения серы превращаются в сероводород, а на второй ступени сероводород удаляют из газа. [c.47]

    Применение пероксида водорода связано с его окислительной способностью и с безвредностью продукта его восстановления (Н )0). Его используют для отбелки тканей и мехов, применяют в медицине (3% раствор — дезинфицирующее средство), в нишевой промышленности при консервировании пищевых продуктов), в сельском хозяйстве для протравливания семян, а также в производстве ряда органических соединений, полимеров, пористых материалов. Как сильный окислитель пероксид водорода используется в ракетной технике. [c.350]

    Применение металлического кальция связано с его высокой химической активностью. Он используется для восстановления из соединений некоторых металлов, например, урана, хрома, циркония, цезия, рубидия, для удаления из стали и из некоторых других сплавов кислорода, серы, для обезвоживания органических жггдко-стей, для поглощения остатков газов в вакуумных приборах. Кроме того, кальций служит легирующим компонентом некоторых свинцовых сплавов. [c.614]

    Существуют разные тиШ)1 обратимых окислительно-восстановитель-ных систем, состоящих из ионов одного и того же металла разных степеней окисления, из двух анионов, несущих разные заряды и систем, состоящих из органических соединений. Примером системы, состояи ей из органических соединений, люжет служить система хинон — гидрохинои. Она представляет собой кристаллическую эквимолекулярную смесь хииона и гидрохинона, называемую хингидроном. Гальванический элемент, основанный на восстановлении хинона в гидрохинон, является обратимым окислительно-восстановительным элементом, по измерению э. д. с. которого при разных температурах можно определить термодинамические функции этой реакции. [c.316]

    Обработка а-бромкетона G (К = арил, адамантил) эквимо-лярным количеством октакарбонилдикобальта, 5 н. гидроксидом натрия, бензолом и ТЭБА, позволяет за 2 ч при комнатной температуре получить дегалогенированный монокетон с почти количественным выходом. МФК-методика дает прекрасные выходы при отношении G/соединение кобальта, равном 10 1. Иногда 1,4-дикетоны Н образуются в небольших количествах как побочные продукты и редко в качестве основных продуктов [549]. Возможная схема восстановления включает реакцию ОН с Со2(СО)в с образованием иона Со (СО) 4 , который экстрагируется в органический слой. Затем, как полагают, проходят следующие превращения  [c.376]

    В зоне редукции, по данным Дж. Е. Клейпула и И.Р. Каплана (1974 г.), происходят весьма сложные и разнообразные процессы, из которых еле-, дует прежде всего указать восстановление соединений Са и М , различных соединений Ре и, по-видимому, других металлов, а также восстановление нитритов до. Еще более сложно ферментативное разложение ОВ, в результате которого образуются как Н. и 2 так и N, МН и различные органические соединения. Например, сахара и аминокислоты разлагаются на органические кислоты и спирты (2-, 3- и 4-углеродиые). [c.47]


Смотреть страницы где упоминается термин Органические восстановление: [c.316]    [c.434]    [c.448]    [c.452]    [c.507]    [c.511]    [c.233]    [c.21]    [c.378]    [c.448]    [c.62]    [c.200]    [c.48]   
Краткая химическая энциклопедия Том 1 (1961) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Алюмогидрид магния восстановление органических соединений

Алюмогидрид натрия восстановление органических соединений

Аппаратура для приготовления амальгам щелочных металлов и восстановления ими органических соединений

Боргидрид алюминия восстановление органических соединений

ВОССТАНОВЛЕНИЕ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ КОМПЛЕКСНЫМИ ГИДРИДАМИ МЕТАЛЛОВ

ВОССТАНОВЛЕНИЕ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ С ПОМОЩЬЮ АЛЮМОГИДРИДА ЛИТИЯ Область применения метода

Восстановление 1п3 из растворов, содержащих органические кислоты

Восстановление важнейших классов органических соединений

Восстановление кислорода из водно-органических растворов

Восстановление на ртутном капельном электроде органических молекул, имеющих сопряженные двойные связи

Восстановление неорганических и органических соединений

Восстановление органических веществ

Восстановление органических веществ с образованием радикалов

Восстановление органических кислот

Восстановление органических соединений

Восстановление органических соединений азосоединений

Восстановление органических соединений алифатических альдегидов

Восстановление органических соединений ароматических альдегидов

Восстановление органических соединений ароматических нитросоединений

Восстановление органических соединений высших спиртов

Восстановление органических соединений двуокиси углерода

Восстановление органических соединений до метана

Восстановление органических соединений кетонов

Восстановление органических соединений крезолов

Восстановление органических соединений ненасыщенных углеводородов

Восстановление органических соединений неорганических соединений

Восстановление органических соединений нитробензола

Восстановление органических соединений окиси углерода

Восстановление органических соединений оксимов

Восстановление органических соединений органических галоидопроизводных

Восстановление органических соединений органических кислот

Восстановление органических соединений различных соединений

Восстановление органических соединений угольной кислоты

Восстановление органических соединений фенолов

Восстановление органических соединений электрохимическое

Восстановление органических соединений эфиров сложных

Восстановление органических соединений, содержащих серу

Восстановление реагентами органическими

Восстановление сложных эфиров органических кислот

Диборан восстановления органических соединени

Карбонилы металлов — катализаторы некоторых реакций восстановления органических соединений

Каталитическое восстановление в неорганической и органической химии Каталитическое восстановление различных неорганических соединений (таблица

Каталитическое восстановление органических кислот (таблица

Каталитическое восстановление органических кислот до первичных спиртов

Каталитическое восстановление различных органических соединений (таблица

Количественный анализ органических соединений методом восстановления

Метод определения общего азота дистилляционным методом с восстановлением нитратного азота хромом и минерализацией органического азота (ГОСТ

Методы восстановления органических соединений

Некоторые вопросы теории полярографического восстановления органических веществ. В. Д. Безуглый

Об учете влияния строения двойного слоя при установлении связи между строением органических веществ и Еих волн восстановления

Обратимое восстановление органических веществ

Окисление и восстановление органических соединений

Органические галоидопроизводные их восстановление

Органические галоидопроизводные также Алкилгалогениды и Галоид для их восстановления

Органические реакции восстановления

Органические соединения восстановление борогидридом натрия

Органические соединения восстановление хромом

Органические соединения, эквивалентная электропроводность в гидразине Осмия соединения, восстановление

Особенности восстановления органических соединений на ртутном капельном электроде при полярографических исследованиях

Потенциалы полуволн полярографического восстановления органических соединений

Применение реакций окисления — восстановления органических реагентов для обнаружения ионов

Примеры реакций восстановления органических соединений амальгамами щелочных металлов

Протонизация при электрохимическом восстановлении органических соединений

Процессы электрохимического восстановления органических соединений

Смирнов Непрямое восстановление органических соединений

Тедорадзе Влияние строения двойного слоя и адсорбции на кинетику восстановления органических соединений

Фотохимическое восстановление азотистых органических соединений

Химическое и электрохимическое окисление и восстановление органических соединений

Шлыгин. Общий аспект проблемы восстановления органических соединений водородом на металлах в присутствии жидкой фааы

Электролитическое восстановление органических соединений

Эршлер Восстановление органических молекул в области малых заполнений поверхности электрода

восстановление олова в органических соединениях



© 2025 chem21.info Реклама на сайте