Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Плутоний хромом

    Соединения Э (VI). Степень окисления - -6 наиболее характерна для урана и может проявляться у нептуния, плутония и реже у америция. При этой степени окисления актиноиды напоминают d-элементы VI группы (подгруппа хрома). [c.653]

    Отдельные тома серии Аналитическая химия элементов выходят самостоятельно но мере их подготовки. Вышли в свет монографии, посвященные торию, таллию, урану, рутению, молибдену, калию, бору, цирконию и гафнию, кобальту, бериллию, редкоземельным элементам и иттрию, никелю, технецию, прометию, астатину и францию, ниобию и танталу, протактинию, галлию, фтору, селену и теллуру, алюминию, нептунию, трансплутониевым элементам, платиновым металлам, радию, кремнию, германию, рению, марганцу, кадмию, ртути, кальцию, фосфору, литию, олову, серебру, цинку, золоту, рубидию и цезию, вольфраму, мышьяку, сере, плутонию, барию, азоту, стронцию, сурьме, хрому, брому, ванадию, актинию, хлору. [c.4]


    Многие спектральные методы, разработанные для определения натрия в элементах, применимы для определения натрия в сплавах и соединениях этих элементов. Поэтому такие методы также рассмотрены в данном разделе. Спектральные методы применяют для определения натрия в рубидии [42, 421], магнии [1112], кальции [485], алюминии [537, 690, 820, 844, 956, 974, 1006, 1112, 1114, 1208, 1215], графите [936], кремнии [138], олове [388], свинце [495, 522, 773], ванадии [78], мышьяке [1007], сурьме [115, 149, 1007], ниобии [35], тантале [129], селене [123, 969, ИЗО], теллуре [123, 140, 1198], хроме [406, 679], молибдене [179, 469, 862], вольфраме [35, 469, 798, 898, 1013], уране [156, 589, 1054], осмии [124, плутонии [1245]. [c.163]

    Определению 1—10 мкг плутония не мешают <0,5 мг урана (VI), <1,0 мг железа (III) и хрома (III), <4,0 мг никеля, <5,0 мг алюминия и лантана. Значительные помехи оказывают фосфаты, сульфаты и органические комплексообразующие реагенты. [c.177]

    При анализе образцов металлического плутония сильно влияло железо, содержание которого составляло 0,02—0,08%. Так как железо титруется вместе с плутонием, то определение его следует проводить другим подходящим методом. В данной работе железо определяли фотометрически. Определению мешают хром, титан, молибден, вольфрам, уран и ванадий. Нитрат-ионы мешают определению за счет их восстановления в редукторе. При отделении плутония от примесей необходимо учитывать полноту выделения. [c.183]

    Для разработки метода были использованы растворы с концентрацией 2,98 и 0,443 мг мл плутония. Концентрацию плутония определяли весовым методом. Большую часть ошибок автор приписывает неточности измерения малых объемов. Определению мешают нитрат- и фосфат-ионы и катионы, которые восстанавливаются хромом(П) или окисляются церием(1У), например катионы золота, рутения и урана. При титровании смеси 999 нг марганца и 786 нг плутония ошибка составила 3%, при титровании смеси 900 нг золота и 810 нг плутония---f-13%, при титровании 450 нг рутения и 761 нг плутония — -f40%- [c.188]

    И. В. Моисеев и Н. Н. Бородина (1955 г.) применили видоизмененный вариант этого метода для определения плутония в образцах, содержащих также хром и марганец. Плутоний предварительно отделяли от хрома и марганца осаждением его в виде купфероната. В отличие от первоначального варианта, титрование избытка двухвалентного железа после восстановления им Ри(У1) проводили раствором сульфата церия 1У) с ферроином в качестве индикатора. [c.200]

    Результаты определения плутония в 12—40 мг чистой двуокиси дали среднее отклонение 0,15%. В присутствии 10% урана, 10% лантана, 2,5% хрома и 2,5% железа ошибка для среднего значения из трех-четырех определений составила около 0,25%. [c.209]

    Определению не мешают небольшие количества урана, которые попадают в титруемый раствор ( 5—6 мг урана), и железо, используемое для восстановления Ри(У1), Хром и никель не мешают в концентрации до 0,5 мг/мл. Продукты деления в количествах, отвечающих содержанию плутония в анализируемых растворах (8г —5, 2г—15, Мо—12, Ки — 7, Сз—15, Ьа — 25, Ва — 5 и Се— Ю мкг/мл), не влияют на результаты определения плутония. При увеличении концентрации осколков до 1 мг/мл в тех же растворах были получены завышенные ре- [c.210]


    В ходе исследования зависимости растворимости иодата плутония от состава раствора было выяснено, что присутствие катионов железа, хрома и урана увеличивает растворимость Ри(ЛОз)4. Такое же действие оказывает увеличение кислотности раствора, которая не должна в эквивалентной точке превышать 0,5 N НЫОз. [c.213]

    Аналогично проводят амперометрическое титрование Ри(1У) иодатом в водно-спиртовых средах (Я. П. Гохштейн, 1953 г.). При определении 10—20 мг плутония с весовым содержанием урана до 300%, хрома до 100%. марганца до 30%, железа до [c.213]

    Определению плутония не мешают уран, молибден, алюминий, бериллий, галлий и, естественно, железо. Мешают марганец и хром, так как перманганат и бихромат, получающиеся в результате окисления двуокисью свинца, прекрасно титруются ионами Fe +. Перманганат может быть предварительно восстановлен щавелевой кислотой до обесцвечивания раствора. Хромат может быть восстановлен до трехвалентного хрома мышьяковистой кислотой, которая не восстанавливает плутоний. [c.239]

    На фоне 1 N НЫОз возможно определение плутония в присутствии урана, лантана, больших количеств хрома и равных количеств железа. Для этого плутоний в растворах с концентрацией 50—100 мкг мл в 1 N НЫОз, содержащих указанные элементы, восстанавливают до Ри(1П) сернистым газом в течение 10—15 мин. (для количественного восстановления плутония в 1 N НгЗО требуется 2—3 часа). Избыток ЗОа удаляют пропусканием через раствор в течение 40 мин. водорода, и производят измерение. Количество плутония определяют по градуировочному графику. [c.242]

    Как следует из табл. 26, хорошо отделяются элементы I, II и III групп. Из IV группы удовлетворительно отделяются все опробованные элементы за исключением циркония, который отделяется только частично. Исследования поведения элементов V группы не проводилось. Из элементов VI и VII групп с плутонием не соосаждаются хром, молибден и марганец (в количе- [c.290]

    Плутоний извлекается практически полностью. Ошибка определения лежит в пределах точности а-радиометрических измерений ( 2 отн. %). Метод позволяет отделить индикаторные количества плутония от больших количеств хрома, свинца, железа и других элементов, а также от продуктов деления. [c.312]

    Хром, марганец, лантан и щелочные металлы не мешают извлечению плутония, и(VI) и Ре(1П) частично экстрагируются совместно с плутонием. [c.327]

    Возможно присутствие в фотометрируемом растворе урана (2 1), плутония (до 200 1), лантана (300 1), железа (300 1), никеля и хрома (1000 1), больших количеств алюминия и марганца. [c.397]

    На рис. 34 приведен один из вариантов технологической схемы переработки радиоактивных отходов с применением в качестве со-осадителя ферроцианида цинка и калия. Использование этого со-осадителя особенно полезно для бедных цезием (меньше 0,001 моль/л) радиоактивных растворов [286]. Эти растворы обрабатывают [335] аммиаком до pH = 2—3, осадок гидроокиси железа вместе с примесями плутония, циркония и ниобия отфильтровывают. Фильтрат нейтрализуют едким натром до рН=12—13 и осадок диураната натрия вместе с примесями гидроокисей стронция и редкоземельных элементов удаляют. Предварительная подготовка раствора может быть осуществлена и несколько иным путем- Радиоактивный раствор нейтрализуют едким натром до pH = 7, фильтрат (после отделения гидроокисей железа, алюминия, хрома) подкисляют соляной кислотой до рН = 3,5- и пропускают через катионит (леватит 5 = 100) в натриевой форме [336]. [c.328]

    Литий, рубидий, калий, це зий, радий, барий, стронций кальций, натрий, лантан, маг НИИ, плутоний, торий, непгу нпй, берилли , уран, гафни) алюминий, титан, цирконий, ва надий, марганец, ниобий, хром цинк, галлий, железо [c.40]

    Следует заметить также, что степень опасности радионуклидов зависит не только от характеристики радиоактивного излучения, но и от их способности накапливаться в живых организмах. Быстрее всего из организма выводятся висмут, родий, бром, серебро, кобальт, №1трий, углерод (пфиод полувыведения от 1 до 10 суток). Для теллура, цезия, бария, меди, рубидия, серы, хлора, калия, скандия, магния и сурьмы эта величина составляет от 10 до 100 суток, а для железа, хрома, цинка, мьппьяка, урана, тория, редкоземельных элементов, бериллия, фтора, фосфора - ог 100 до 1000 суток. Период полувьшедения свинца, радия, нептуния, плутония, америция и кальция превьппает 1000 суток [184]. [c.101]

    Метод испарения использован для анализа урана (UsOs), марганца, железа, хрома, кремния, вольфрама, молибдена, ванадия, титана, алюминия, бериллия, тория, плутония, циркония, тантала, кальция (отгопка в основном из их оксидов). Особенно ценен этот метод для анализа радиоактивных элементов. Примеси конденсируются в графитовом стаканчике. [c.199]

    Хорошие результаты дает применение растворов двухвалентного хрома для восстановления плутония [423]. 1 —10 мг плутония в сульфатном растворе восстанавливали до трехвалентного состояния избытком сульфата хрома (II) в 1 М растворе H2SO4. Избыток восстановителя окисляли кислородом воздуха, что контролировалось достижением устойчивого потенциала цепи, состоящей из платинового и каломельного электродов. Pu(III) титровали затем до Pu(IV) стандартным раствором сульфата церия (IV), который приливали из шприцевой бюретки. Пр определении 2—10 мг плутония была получена точность 0,2%. при постоянной воспроизводимости. [c.185]


    Хельбиг [458] применил растворы двухвалентного хрома в качестве восстановителя для определения микрограммовых количеств плутония. Техника работы при ультрамикроанализе описа- [c.186]

    Перхлоратный, сульфатный или хлорид-ный раствор плутония любого валентного состояния помещают в микроконус, в котором находится 80—300 нл Н2304 , и добавляют 90—180 нл 0,05 N раствора хрома (II) в 0,1 N Нз504. Затем в раствор вводят платиновый и каломельный электроды и вание раствора достигается за счет вибрации реле. При избытке хрома потенциал сначала [c.187]

    В работе было исследовано влияние примесей железа и хрома. Так как двухвалентное железо титруется вместе с Ри(П1), определение плутвния проводилось по разности объемов до второй и первой эквивалентных точек. При соотношении Ре Ри = = 0,3—4 для 2 мг плутония в 0,8—2,2 N Н2504 средняя ошибка титрований составила +2%. В присутствии хрома был получены завышенные результаты. При соотношении Сг Ри = 0,5 ошибка составила -Ы2%, при увеличении количеств хрома ошибки возрастают. [c.195]

    В. И. Кузнецов и В. А. Михайлов (1956 г.) показали возможность иодометрического определения Ри(1У) титрованием избытка тиосульфата натрия после добавления его к раствору, полученному растворением в 1 М Нг504 промытого водой осадка селенита плутония Ри(ЗеОз)2. Реакция осаждения селенита неизбирательна, вместе с плутонием осаждаются также железо, уран (VI) и хром. [c.196]

    Продолжительность анализа образцов плутония, содфжащих хром и марганец, 6 час., а без хрома и марганца —2—3 часа. [c.200]

    В работе Палея и Чжан Вень-цина [179] описан Метод коМ-плексонометрического определения четырехвалентного плутония с индикатором арсеназо I. Ионы Ри + образуют с арсеназо I в кислой среде соединения с яркой сине-фиолетовой окраской прибавление избытка ком плексо на (III) вызывает переход окраски в розовую. Наиболее четкий переход окраски и минимальная ошибка при титровании получаются растворах 0,1—0,2N HNO3. Среднее отклонение при этом для 2,5—25 мг плутония составило 0,5% и систематическое—0,45%. Титрованию не мешают 140-кратные количества урана, 4нкратные количества хрома, 3-кратные количества лантана и свинца и 2-кратные количества никеля. Среднее отклонение ири определении 1,4— 5,3 мг плутония в присутствии указанных примесей составило 1,2%. Железо не мешает в количестве 3—4% от веса плутония. Определению не должны мешать элементы, дающие непрочные комплексы в кислой среде, в том числе Са, Mg, Zn,. Al, d, Мп, и должны мешать Th и Zr. [c.208]

    Для определения плутония в работе использованы концент-зации выше 50 мг/л. Определению мешают уран, железо и хром. Лг возможность определения плутония в цитратных растворах при pH 4 позднее также указал Небель [573]. [c.250]

    Наиболее пригодными для определения плутония являются растворы с pH 5, Потенциал полуволны в этих растворах не зависит от концентрации тартрата от 0,1 до 1,2 М и равен —0,182 в относительно нас.к.э. Диффузионный ток пропорционален концентрации плутония с коэффициентом диффузии в уравнении Ильковича (18), равным 0,17 см /сек. Для определения плутония были использованы концентрации выше 50 мг/л. Мешаю1 большой избыток урана, а также хром и железо. При pH 5 уран образует самостоятельную волну, а при pH 1,25 может быть получена волна урана без волны плутония. [c.250]

    Количественному осаждению плутония щелочами не мешают алюминий, свинец, цинк, соли калия и аммония. В растворах, содержащих кадьций, магний, марганец, кобальт, медь, хром и [c.253]

    Осаждению купфероната плутония не мешают эквимолярные количества урана(У1), хрома(1П), марганца(П), алюминия, серебра, никеля, лантана и америция. Потери плутония в фильтрате не превышают 0,3 мг1л. Определения проводят по следующей методике [161]. [c.259]

    Этим методом плутоний достаточно полно отделяется от урана, железа, хрома и ряда других элементов, и, на 90—957о от етро-Ai KTOB деления. Нептуний на всех операциях сопутствует плутонию и требует специального метода отделения. [c.269]

    В тех случаях, когда в исследуемом растворе присутствуют большие количества урана (до 250 л) и хрома наряду с элементами, не осаждаемыми в щелочной и аммиачной средах, для выделения плутония можно применять соосаждение плутония с гидроокисью никеля в присутствии перекиси водорода (А. А. Чайхорский и сотр., 1953 г.). Метод отделения плутония от урана и хрома основан на способности этих примесей образовывать растворимые перуранаты и хроматы в щелочной среде (КОН, NaOH) в присутствии перекиси водорода. В тех случаях, когда в растворе кроме урана и хрома присутствуют медь, цинк, кадмий, серебро, кальций и др., не осаждаемые в аммиачной среде элементы, соосаждение плутония проводят на гидроокиси Лантана аммиаком, не содержащим углекислоты в присутствии перекиси водорода. Большим преимуществом данного метода (соосаждение с гидроокисью никеля) является его быстрота (выделение и определения плутония занимает около часа), а также возможность определять плутоний из раствора со значительным содержанием урана (до 250 л). Точность определения 67о. [c.279]

    А. А. Чайхорский и сотр. (1954 г.) исследовали соосаждение Pu(IV) на иодате свинца для отделения от урана, железа, хрома и некоторых других элементов. Совместно с плутонием на иодат свинца соосаждается с 20% железа независимо от содержания его в пробе. Уран соосаждается приблизительно на 6% (при содержании его от 0,1 до 200 мг). В фильтрате остается только. Г 0,3% плутония. [c.282]

    Осаждение Ри( ) гидроокисью аммония [3, стр. 329 48, 170] широко используется для отделения его от щелочных и щелочноземельных металлов, от малых количеств металлов, образующих аммиакаты (Сц2+, N1 +, 2п +, 0(1 +, А +), а также для концентрирования плутония в малом объеме [66, 368]. 0 бладая малой избирательностью, эта реакция используется для отделения плутония на последних стадиях очистки. Количественному осаждению мешают анионы, комплексующие плутоний карбонат, оксалат, фторид, фосфат, тартрат и некоторые другие. Осаждение также не дает удовлетворительных результатов, если раствор содержит большие количества цинка, хрома и бора, которые захватываются осадком гидроокиси плутония. [c.289]

    N приводит к более полному осаждению сульфата плутония за счет увеличения концентрации общего иона. Дальнейшее увеличение концентрации свободной кислоты содействует образованию сульфатных комплексов плутония, вплоть до образования комплекса с восемью сульфатными группами [Г50]. Добавление спиртов, ацетона и хлорной кислоты резко снижает растворимость сульфата плутония. П. Н. Палей и И. С. Скляренко (1952 г.) предложили осаждение плутония хлорной кислотой из сульфатных растворов для отделения его от некоторых элементов, растворимость сульфатов которых значительно выше растворимости сульфата плутония. При создании в сульфатном растворе 30%-ной концентрации по хлорной кислоте происходит количественное осаждение плутония в виде Ри(804)2 4Н2О. Авторы показали возможность отделения плутония от лантана, хрома и никеля (при содержании каждого до 10% от содержания плутония). Ре(П1) и и(VI) отделяются частично. Полнота осаждения плутония в чистых растворах составляет 99,5—99,9%, а присутствие примесей снижает ее до 90—97%. [c.293]

    Органические производные фосфорных кислот, широко используемые в аналитической химии, были опробованы и для осаждения плутония, а также для отделения его от примесей 194, 205]. Оказалось, что фитиновая кислота и фитин (соль ино-зитпиро фосфорной кислоты), достаточно полно осаждают четырехвалентный плутоний из сильнокислых сред (до 10—12 N ННОз). Как было установлено [205], прокаленный осадок не имеет постоянного состава и соединение это не может быть рекомендовано для точных весовых определений, но для отделения от различных элементов его можно с успехом применять. Действие фитиновой кислоты и фитина при осаждении совершенно идентично. Избирательность этих реагентов находится в большой зависимости от кислотности исходного раствора. Если в нейтральных растворах фитин и фитиновая кислота осаждают практически все элементы, за исключением щелочных металлов, то в 1 Л/ ННОз избирательность резко повышается и совместно с Ри(1У) осаждаются элементы подгруппы титана, а также Се(1У), ТЬ(1У), и(1У), Сг(1И) и Ре(1П). При более высоких кислотностях исходного раствора (до 6 Л/) железо и хром также остаются в растворе [8]. Фитинаты Т1, 2г, НГ, 8с, Се (IV) и ТЬ не растворяются даже в 2 N ННО3. Полнота осаждения [c.296]

    Из растворов плутония (III) и (IV) при pH 4—5 салицилат-ион количественно осаждает плутоний. Трехвалентный плутоний выпадает в осадок в виде -Ри(5а/)з 1,5 Н2О, четырехвалентный— в виде PuO(Sal)2 [100]. При осаждении салицилатов плутония происходит отделение от основной массы ряда элементов, образующих в этих условиях относительно устойчивые растворимые комплексные салицилаты U(VI), Fe(III), Ti, AI, Сг(1П) и др. Тщательные исследования Звягинцева и Сударикова [lOOf показали, что осадок плутония захватывает 2—3% урана, хрома и 1 % железа. Отделение от алюминия и титана количественное. Операция осаждения плутония с салициловой кислотой может быть одной из ступеней при определении плутония весовым или другими методами. [c.302]

    П. Н. Палей и М. С. Милюкова (1954 г.) аналогичным методом отделяли полумикро- и макроколичества плутония от железа, хрома, лантана, свинца, марганца, кальция, бария, кремния и других элементов. Pu(IV) экстрагируется количественно при обработке водного раствора Ъ М по HNO3) 10-кратным объемом эфира, содержащего 3 М HNO3. Промывка эфирного экстракта в таких случаях не требуется. Органический раствор, содержащий плутоний, обрабатывается, так же как и в случае отделения, индикаторных количеств плутония. [c.312]


Смотреть страницы где упоминается термин Плутоний хромом: [c.181]    [c.200]    [c.203]    [c.291]    [c.295]    [c.336]   
Новые окс-методы в аналитической химии (1968) -- [ c.176 ]




ПОИСК





Смотрите так же термины и статьи:

Плутоний



© 2025 chem21.info Реклама на сайте