Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ВЭТТ определение

    Впоследствии метод теоретической тарелки был применен для расчета насадочных аппаратов (стр. 438), причем для определения высоты аппарата пользовались понятием высоты насадки, эквивалентной теоретической тарелке (ВЭТТ) определение этой высоты связано с значительными трудностями и величина ее не постоянна по высоте аппарата. [c.430]


    В табл. 5.10 приведены результаты определения эффективности этой колонны для эталонной смеси при различных температурах ее нагрева и двух значениях кратности орошения. Из этих данных следует, что при подаче сьфья с температурой ниже точки начала кипения четкость фракционирования соответствует 4,5-5,0 теоретическим тарелкам (ВЭТТ равна 22-24 см), а при подаче сьфья в парожидкостном или полностью в паровом состояниях она увеличивается до 6,0-6,5 теоретических тарелок (ВЭТТ равна 17-18 см). Уменьшение кратности орошения с 3,3 до 2 заметно снижает эффективность. [c.119]

    Число теоретических тарелок зависит от взаимного расположения рабочей и равновесной линий, т. е. от величины движущей силы процесса. При взаимном сближении рабочей и равновесной линии средняя движущая сила процесса уменьшается, а число теоретических тарелок увеличивается. При увеличении расстояния между рабочей и равновесной линиями средняя движущая сила процесса возрастает, что приводит к уменьшению числа теоретических тарелок. Найденное число теоретических тарелок используется для определения высоты контактной зоны аппарата Я или числа реальных тарелок Nд. В первом случае используют высоту контактной зоны Н,, эквивалентную одной теоретической тарелке (ВЭТТ), тогда [c.45]

    Как было показано выше, величина ВЭТТ зависит от большого числа факторов. Однако имеющиеся уравнения для расчета ВЭТТ, как правило, не в полной мере учитывают влияние различных факторов и поэтому они имеют ограниченную область применения — только для насадок определенных типов и размеров. В этой связи величину ВЭТТ обычно определяют экспериментально на модельных или реальных смесях. [c.273]

    При использовании метода определения ВЭТТ высоту насадки Я определяют как произведение числа теоретических тарелок на высоту насадки Ат, эквивалентную одной теоретической тарелке (ВЭТТ)  [c.317]

    Поток жидкости, проходящий через слой зерненого адсорбента, нерегулярен. Жидкость протекает через множество различных взаимосвязанных каналов, отличающихся друг от друга извилистостью и степенью сужения. В результате пути, по которым движется поток жидкой фазы с растворенными в ней веществами, имеют различную длину. Поэтому время прохождения слоя адсорбента различными молекулами значительно отличается от средней величины. Возникает дополнительное размывание зоны, называемое вихревым. Влияние этого размывания на ВЭТТ учитывается первым членом уравнения (1.24). В жидкостной хроматографии вихревая диффузия также вносит определенный вклад в размывание. [c.72]


    Интересна возможность определения из хроматографических данных коэффициента диффузии газов и жидкостей. В самом деле , из (54) следует, что ВЭТТ связана с коэффициентами диффузии как в газовой, так и в жидкой фазах. Если опыт проводить в полой, трубке, то связь коэффициента диффузии с Н определяется уравнением [c.166]

    В качестве характеристики работы колонки используется высота эквивалентной теоретической тарелки (ВЭТТ). При этом процесс газохроматографического разделения смеси сопоставляется с ее разделением методом ректификации. Рассчитывают число тарелок п ректификационной колонны, необходимое для достижения определенного критерия разделения, и их высоту (ВЭТТ) — чем больше число тарелок н соответственно меньше ВЭТТ, тем лучше разделение. В связи с тем что критерий разделения К зависит от растворимости, то можно получить следующую зависимость  [c.48]

    Колонны С чередующимися смесительными и отстойными секциями, несмотря на сравнительно широкое применение в промышленности (диаметр превышает 2 м), изучены пока недостаточно. Методы расчета их предельной пропускной способности и эффективности пока отсутствуют, поэтому определение основных размеров данных колонн возможно лишь на основании опыта промышленной эксплуатации. Результаты экспериментальных исследований колонн малых размеров (как правило, диаметром не выше 300 мм) указывают на сильную зависимость их эффективности не только от физико-химических свойств взаимодействующих жидкостей, но также от выбора дисперсной фазы, направления массообмена (из сплошной фазы в дисперсную или наоборот) и скорости вращения ротора. В среднем рассматриваемые колонны по производительности и эффективности близки к роторно-дисковым пропускная способность по сумме обоих потоков равна 15—25 м /(м -ч), а ВЭТТ колеблется в пределах от0,6 до 1,0 м. Заметим, что при прочих равных условиях зависимость эффективности от скорости вращения ротора носит экстремальный характер. [c.597]

Рис. 1.2. Определение ВЭТТ в ТСХ при постоянных условиях Рис. 1.2. <a href="/info/304496">Определение ВЭТТ</a> в ТСХ при постоянных условиях
    В этой форме, иногда дополненной другими членами, уравнение Ван-Деемтера используют для эмпирической обработки экспериментальных данных по определению ВЭТТ. График зависимости Н от и приведен на рис. 1.15. [c.68]

    В настоящее время происходит бурное развитие капиллярной хроматографии, которая вытесняет насадочную из многих областей анализа, особенно анализа многокомпонентных смесей. Это вызвано не только техническим освоением метода, но и определенными преимуществами, которые дает применение капиллярных колонок. Такие колонки обладают высокой проницаемостью и высокой эффективностью, значение ВЭТТ может достигать на них 0,12—0,15 мм, а длина до 1000 м, хотя, конечно, реально применяемые колонки значительно короче и обычно не превышают 30—50 м. Это дает возможность получать на капиллярных колонках эффективность разделения, измеряемую миллионами теоретических тарелок, в то время как на насадочных она Не превышает десятков тысяч, т. е. на два порядка ниже. [c.116]

    Имеется обширная литература по насадкам и другим устройствам, увеличивающим поверхность соприкосновения в перегонных колоннах, включая сюда и работы по определению величины ВЭТТ при полном орошении, характеризующие эти насадки и устройства. Ниже особое внимание будет уделено применению кривых разгонок для выражения результатов фракционирования, а также показано влияние относительной летучести, флегмового числа, числа теоретических тарелок и других факторов на четкость излома этих кривых. [c.14]

    Диаграммы равновесных составов пар—жидкость. При рассмотрении ВЭТТ (высота, эквивалентная теоретической тарелке) в разделе 1 был использован график (см. рис. 1) с двумя кривыми, выражающими зависимость температур кипения от состава жидкой двойной смеси и зависимость состава пара от температур кипения. Можно для этой цели пользоваться одной кривой, непосредственно выражающей зависимость состава пара от состава жидкости.Такой график (рис. 5) называется диаграммой или кривой равновесия пар—жидкость (или диаграммой X, у). Эти кривые лежат в основе большинства расчетов и теоретических анализов перегонки, так как они содержат основные данные по взаимозависимости составов жидкости и ее пара. Для того чтобы данные были достоверными, их следует определить непосредственным опытом, что не так просто, так как почти всегда наряду с простой перегонкой имеет место и ректификация. Чтобы избежать этого, были разработаны специальные методы и приборы для определения равновесия (см. примечание на стр. 11). [c.24]


    Определение числа теоретических тарелок и ВЭТТ при частичном орошении является делом более сложным. Изучение материального баланса как непрерывной, так и периодической ректификации с частичным орошением показывает, что изменение состава жидкости и пара от тарелки к тарелке будет в этом случае меньшим, чем в случае полного орошения. Это объясняется тем, что в течение любого долгого промежутка времени на тарелку поступают и покидают ее неравные количества жидкости и пара. Поэтому для нахождения числа теоретических тарелок при частичном орошении необходимо пользоваться другим способом построения и другими уравнениями. Эти методы (см. стр. 44 и следующие) учитывают влияние различной скорости потоков жидкости и пара на материальный баланс тарелки или секции насадочной колонны, а также усложняющее влияние других факторов, например непрерывное изменение составов при периодической ректификации с частичным орошением (стр. 45). [c.30]

    Устройство колонки просто, ее характеристика легко воспроизводится, в особенности, если засыпка насадки в колонку производится правильно и тщательно. Колебание ВЭТТ для различных колонок одного и того же размера и с одной и той же насадкой, полученных различными исследователями, вызывается не столько свойствами самой насадки, сколько способом определения, чистотой компонентов смеси, служащей для испытания, и точностью анализа проб при испытании. [c.175]

    Число теоретических тарелок колонки для экстрактивной разгонки. Конечное разделение, которое желательно, соответствует степени обогащения, равной 51. При относительной летучести, равной 1,44, необходимое минимальное число теоретических тарелок равно 10. При ВЭТТ (высота, эквивалентная одной теоретической тарелке см. определение в гл. 1), равном для этой насадки [c.299]

    Жидкость состава Ь (рис. 1) будет кипеть при 4 и находиться в равновесии с паром состава с. Тарелка, которая вызовет такое же изменение состава, какое происходит при идеальной простой перегонке, т. е. от а к й или от 6 к с, или же любое другое аналогичное изменение состава, например от с к е, и будет теоретической тарелкой. Концентрации легколетучего компонента, соответствующие этим равновесным составам пара и жидкости, отвечают концам отрезков горизонтальных прямых, лежащих между кривыми жидкости и пара на графиках подобного рода. Так как кривые жидкости и пара сходятся на ординатах, отвечающих составам чистых веществ, то очевидно, что в любой смеси разность составов, отвечающая действию одной теоретической тарелки, будет приближаться к составу чистого вещества. Кроме того, чем величина относительной летучести ближе к единице, тем ближе лежат кривые пара и жидкости друг к другу и тем меньше будет разница в составе, отвечающая одной теоретической тарелке. Насадочная колонка (или любой другой ректифицирующий прибор), на котором производят разделение, соответствующее двум последовательным ступеням или единицам, например от а до с, эквивалентна, как принято говорить, двум теоретическим тарелкам. Если высота такой насадочной колонки равна 25 см, то ВЭТТ равна 12,5 см. Подобное рассуждение применимо к любому числу теоретических тарелок и к любой высоте колонки. В настоящее время имеются колонки, эквивалентные более чем 100 теоретическимтарелкам. Можно ожидать, что для данной колонки или насадки ВЭТТ, определенная на разных двойных смесях, будет иметь примерно одинаковую величину, если эти смеси будут близкой химической природы и будут иметь близкие величины вязкости и поверхностного натяжения. Если же эти характерные свойства смесей сильно различаются, то, повидимому, в значительной степени изменяются толщина жидкой пленки, поверхность соприкосновения газа с жидкостью и скорость диффузии. Таким образом, одна и та же колонна или насадка может обладать весьма различными величинами ВЭТТ. Выражение рабочей характеристики колонны с помощью представлений о сопротивлении переносу вещества через пленку на границе раздела между паром и жидкостью получило существенное развитие, однако использование в расчетах теоретических тарелок и ВЭТТ имело и имеет значительно большее практическое значение. [c.11]

    Насадка Мак-Миллана работает эффективно при скорости вплоть до 200 мл газа в минуту и стандартных температуре и давлении. Однако не было опубликовано фактических данных по ВЭТТ, определенных по каким-нибудь смесям, кипящим выше или ниже комнатной температуры. Не было также проведено сравнение с эффективными насадками, например стеклянными или металлическими одновитковыми спиральками или насадками хэли-грид. [c.340]

    Метод аротнвоточпой кристаллизации в принципе аналогичен другому, двухфазному методу разделения смесей — ректификации. Разделение в кристгллизацион-ной колонне, как и в ректификационной, основано на различии составов равновесных фаз. При осуществлении противоточной кристаллизации разделяемая смесь может также вводиться в середину колонны, с одного конца которой находится устройство для кристаллизации, а с другого — устройство для плавления. В этом случае кристаллизационная колонна по существу будет состоять из двух секций, которые соответственно следует назвать исчерпывающей и укрепляющей. Вообще, по-видимому, для характеристики процесса противоточной кристаллизации из расплава можно применять основные понятия и термины, используемые в ректификации. Так, в частности, при оценке эффективности кристаллизационных колонн обычно пользуются понятием ВЭТТ. Определенные для некоторых конструкций кристаллизационных колонн величины ВЭТТ лежат в пределах 2—3 см. Примерно такую же величину ВЭТТ имеют и эффективные лабораторные насадочные ректификационные колонны. [c.101]

    Размывание хроматографической полосы и его физические причины. Главные направления в развитии теории неравновесной хроматографии теория тарелок и теория эффективной диффузии. Различие между этими теориями. Форма выходной кривой в неравновесной хроматографии при идеальной изотерме. Теория тарелок. Понятие об эффективности хроматографической колонки с точки зрения теории тарелок. Уравнение материального баланса и уравнение хроматографической кривай в теории тарелок. [Иирина хроматографического пика на разных его высотах. Высота, эквивалентная теоретической тарелке (ВЭТТ). Способы определения числа теоретических тарелок. [c.296]

    Условия определения числа теоретических тарелок а —см, [175] б —другие характеристики не приведены в — меньшие значения ВЭТТ соответствуют небольшим нагрузкам, большие — более высоким нагрузкам г —эталонные смеси н-гептан—метилциклогексан и н-додекан—циклогексилциклопентан значения ВЭТТ относятся к различным давлениям и к средней плотности орошения. [c.595]

    В табл. 5 дана характеристика наиболее важных видов колонок, используемых в лабораторной практике. Эффективность оце-иивается значениями ВЭТТ (высота, эквивалентная одной теоретической тарелке эта условная величина соответствует высоте колонки в сантиметрах, отвечающая как бы одной теоретической та релке). ВЭТТ приведенных колонок зависят от их пропускной способности у большинства типов колонок ВЭТТ возрастает эффективность колонки падает) с повышением пропускной способности. При определенной величине последней флегма может не стекать в перегонную колбу, а удерживаться в колонке током поднимающихся ей навстречу паров. Колонка за.хлебывается . Естественно, что при этом невозможна никакая ректификация. [c.75]

    В табл. 13 приведены собранные Фенске с сотрудниками данные по характеристике большого числа колонок, сконструированных и испытанных различными исследователями. Большие колебания ВЭТТ, указанные в табл. 13, вызваны не только разностью диаметра колонок, длиной слоя насадки и неизбежными расхождениями техники испытаний они связаны также и с колебаниями в плотности насадки, если витки не трамбуются. Применение стеклянных витков в качестве насадки оправдывается лишь в тех случаях, когда требуется коррозионноустойчивая насадка, как это имеет место, например, при ректификации кислот, галоидсодержаш,их органических веш,еств, определенных соединений серы и некоторых продуктов фенольного характера. [c.176]


Библиография для ВЭТТ определение: [c.161]    [c.161]    [c.161]   
Смотреть страницы где упоминается термин ВЭТТ определение: [c.181]    [c.7]    [c.234]    [c.176]    [c.448]    [c.587]    [c.185]    [c.39]    [c.75]    [c.133]    [c.184]   
Перегонка (1954) -- [ c.29 , c.55 , c.62 , c.64 ]




ПОИСК







© 2025 chem21.info Реклама на сайте