Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Насадка эффективность массообмена

    Одной ИЗ основных причин малой эффективности насадочных колонн, работающих в обычных гидродинамических режимах, является неравномерность распределения жидкости по поверхности насадки. Жидкость, стекающая по насадке, образует каналы, в результате чего резко уменьшается поверхность контакта между нею и паром, увеличивается толщина слоя стекающей жидкости и ухудшается тепло- и массообмен. Трудность равномерного распределения жидкости по насадке особенно возрастает при увеличении диаметра колонны, [c.434]


    Насадочные колонны для массообменных процессов между газом и жидкостью чаще всего работают в пленочном режиме. Максимальная межфазная поверхность в этом случае равна поверхности элементов насадки, однако в действительности она обычно меньше по следующим причинам. Во-первых, часть поверхности насадки может быть не смочена жидкостью. Во-вторых, часть жидкой фазы внутри насадки пребывает в аппарате длительное время и вследствие этого находится в равновесии с газом. Межфазную поверхность, образованную этой застойной жидкостью, называют статической. В процессах абсорбции, десорбции, ректификации она является неактивной эффективная удельная поверхность контакта фаз равна разности между смоченной и статической поверхностью насадки а = —Сст- [c.50]

    Известны различные конструкции насадок для массообменных аппаратов, как насыпного, нерегулярного типа, так и регулярно укладываемая насадка. В этих конструкциях основной задачей становится увеличение эффективности массообменных процессов. [c.164]

    Главным направлением нашей деятельности является модернизация узлов экстракции на установках селективной очистки масляных фракций, поскольку правильный подбор насадки для массообменных колонн и технологической схемы во многом определяет эффективность работы установок, а следовательно, и технико-экономические показатели работы масляных производств. [c.28]

    При создании насадок новых типов ставятся следующие цели во-первых, увеличение эффективности массообменного процесса, во - вторых, расширение интервала устойчивой работы аппарата (как по нижнему, так и по верхнему пределам). Для достижения указанных целей насадки должны удовлетворять определенным технологическим требованиям  [c.163]

    Такое конструктивное выполнение насадки способствует при заполнении ею аппарата достичь высокого свободного объема за счет максимального исключения взаимного проникновения элементов и предотвращения плотного прилегания отдельных участков друг к другу с соответствующим блокированием части поверхности насадки. Это дает при работе аппарата значительно повысить эффективность массообменных процессов за счет постоянного обновления поверхности фаз, создания турбулизированного газового потока внутри каждого элемента насадки, что обеспечивает снижение диффузионного сопротивления газовой фазы. Все это позволяет расширить диапазон эффективной работы полезной модели при изменении нагрузок по фазам. Кроме того, насадка технологична в изготовлении и имеет низкую стоимость. [c.165]


    Сравнение эффективности массопередачи для седел Инталокс с другими типами насадки (рис. 1-77) показало, что более равномерное распределение жидкости на седлах Инталокс приводит к повышенной эффективности насадки этого типа Установлено (рис. 1-78), что на насадке Фиберглас в колонне диаметром 150 лж эффективный массообмен достигается при >9600 кг/(л ч). [c.54]

    Перегонка с ректификацией - наиболее распространенный в химической и нефтегазовой технологии массообменный процесс, осуществляемый в аппаратах - ректификационных колоннах - путем многократного противоточного контактирования паров и жидкости. Контактирование потоков пара и жидкости может производиться либо непрерывно (в насадочных колоннах) или ступенчато (в тарельчатых ректификационных колоннах). При взаимодействии встречных потоков пара и жидкости на каждой ступени контактирования (тарелке или слое насадки) между ними происходит тепло- и массообмен, обусловленные стремлением системы к состоянию равновесия. В результате каждого контакта компоненты перераспределяются между фазами пар несколько обогащается низкокипящими, а жидкость - высококипящими компонентами. При достаточно длительном контакте и высокой эффективности контактного устройства пар и жидкость, уходящие из тарелки или слоя насадки, могут достичь состояния равновесия, то есть температуры потоков станут одинаковыми, и при этом их составы будут связаны уравнениями равновесия. Такой контакт жидкости и пара, завершающийся достижением фазового равновесия, принято называть равновесной ступенью, или теоретической тарелкой. Подбирая число контактных ступеней и параметры процесса (температурный режим, давление, соотношение потоков, флегмовое число и др.), можно обеспечить любую требуемую четкость фракционирования нефтяных смесей. [c.195]

    Насадок, полностью удовлетворяющих всем указанным требованиям, не существует, поскольку некоторые из требований противоречивы, например, пункты 1 и 3. При нормальной эксплуатации насадочных колонн массообмен происходит в основном в пленочном режиме на смоченной жидкостью поверхности насадок. Естественно, чем больше удельная поверхность насадки, тем эффективнее массообменный процесс. Однако насадки с высокой удельной поверхностью характеризуются повышенным гидравлическим сопротивлением. В химической [c.415]

    Гидродинамическая обстановка на тарелке (или слое насадки) суш ественно влияет на эффективность массопереноса, на степень достижения равновесных значений концентраций фаз. Чем ниже эффективность тарелки, тем, очевидно, необходимо большее время пребывания фаз в контакте или большая поверхность контакта. При движении жидкости вдоль контактного элемента наблюдается неравномерность массопереноса, обусловленная различными градиентами концентраций (движущей силы), различной высотой слоя жидкости, обратным забросом фаз, различной гидродинамической обстановкой и т. д. Поэтому целесообразно воспользоваться для оценки эффективности массопереноса характеристиками локальных объемов массообменного пространства, в пределах которых может быть принята однородная гидродинамическая структура потоков, и определять эффективность контактной ступени интегрально. Такой характеристикой эффективности массопереноса является локальный КПД в форме уравнения (4.59), записанный для многокомпонентной смеси в матричном виде как [1, 45, 46] [c.131]

    После установки на фундаменте тарельчатый или насадочный аппарат выверяют по высоте и вертикальности, после чего закрепляют фундаментными болтами. От точности установки аппаратов по вертикали во многом зависит эффективность работы тарелок и насадки массообменных колонн (четкость разделения продуктов переработки на компоненты при ректификации или степень поглощения компонентов при абсорбции). [c.337]

    Эффективность насадки в значительной степени зависит от величины активной поверхности й/, которая участвует в массообмене и зависит от типа и размеров насадочных тел, их материала, нагрузок по пару и жидкости и других факторов. Несмотря на значительную разницу ве- [c.305]

    Осн. характеристики насадок-уд. пов-сть и своб. объем. Под уд. пов-стью / понимают суммарную пов-сть всех насадочных тел в единице объема аппарата (м м ). Чем больше /, тем вьппе эффективность работы насадки, но больше гидравлич. сопротивление и меньше производительность. Своб. объем е-суммарный объем пустот между насадочными телами в единице объема аппарата (м /м ). Для непористой насадки е определяют, как правило, заполнением ее объема водой. Отношение объема воды к объему, занимаемому насадкой, дает величину е. Чем она больше, тем вьппе производительность, меньше гидравлич. сопротивление и эффективность насадки. Поскольку при тепло- и массообмене кол-во переносимых компонентов газа и жидкости или теплоты пропорционально пов-сти контакта фаз, целесообразнее пользоваться мелкими насадками (размеры 20-30 мм), имеющими большую уд. пов-сть. Коэф. массопередачи также, как правило, больше при наличии мелкой насадки. Однако с уменьшением размеров насадочных тел ухудшается их смачивание и уменьшается доля активной пов-сти насадки, участвующая в массообмене. В [c.173]


    Перемешивание реакционной смеси в псевдоожиженном слое приближает режим к идеальному смешению. Кроме того, если скорость газа превышает скорость начала псевдоожижения, то часть газа проходит слой катализатора в виде пузырей, а объемный коэффициент массообмена между пузырями и остальной частью слоя невысокий -не превышает 0,5 с . Фактически газ в пузырях есть байпас реакционной смеси. Оба явления не способствуют высокой эффективности процесса в целом. Для увеличения массообмена специальной массообменной насадкой, например, в виде проволочных спиралей внешним размером несколько сантиметров, разбивают пузыри. Использование насадки, занимающей 2-5% от объема слоя, увеличивает коэффициент массообмена до 3 с , что приводит к торможению перемешивания реакционной смеси в объеме, приближая режим к вытеснению. Другой способ заставить работать пузыри заключается в добавлении в катализатор очень мелкой фракции. Такая пыль попадет в пузыри, где частично будет протекать реакция. [c.224]

    В ректификационных аппаратах многие десятилетия используются различного типа массообменные тарелки. Многие тарелки в определенном интервале работы не уступают по эффективности насадкам. Ниже рассмотрены некоторые конструкции массообменных тарелок. [c.46]

    Расчетами установлено, что замена клапанных тарелок на эффективную нерегулярную насадку - каскадные мини - кольца №2 позволит интенсифицировать массообменные процессы в колоннах, снизить флегмовые числа с 1,5 (по проекту) до 1,1 в дебутанизаторе и с 14,43 (по проекту) до 11,5 в изопентановой колонне с получением изопентановой фракции марки А по ТУ [c.225]

    Цель работы. Разработка конструкции регулярных насадок, отвечающих всем требованиям к данному типу контактных устройств высокие эффективность и пропускная способность, низкое гидравлическое сопротивление при пониженной склонности к забивке технологическими отложениями и разработка метода расчета колонных аппаратов с уголковой насадкой. В соответствии с указанной целью в работе решались следующие задачи разработка конструкции регулярных уголковых насадок исследование их гидродинамических и массообменных характеристик разработка метода расчета колонного аппарата с уголковой насадкой и проведение промышленных испытаний. [c.3]

    Разработана конструкция уголковой насадки как эффективного контактного устройства для колонных массообменных аппаратов, защищенного Патентом РФ № 2094113, подтверждена результатами ее внедрения в трех колонных аппаратах действующих крупнотоннажных производств на Стерлитамакском ЗАО Каустик  [c.4]

    Проведенные испытания подтвердили способность уголковой насадки к самоочищению и показали возможность ее использования в качестве эффективного отбойного устройства, препятствующего проскоку взвешенных частиц с газовой фазой внутрь массообменного аппарата. [c.19]

    Масштабирование массообменных аппаратов. Аппараты, в которых основным процессом является массоперенос, масштабировать очень трудно. Большие сложности вызывает сохранение гидродинамического подобия, поскольку в этом случае приходится иметь дело с двухфазным потоком. Критерии подобия движения фаз различны и при использовании одних и тех же веществ в модели и образце приводят к противоречивым условиям увеличения масштаба. Большое разнообразие массообменных аппаратов не дает возможности вывести общие правила масштабирования, поэтому мы ограничимся примером повышения масштаба абсорбционной колонны с насадкой. Движение газа в колонне обусловлено разностью давлений на входе и выходе. Критерий Рейнольдса, отнесенный к эффективному диаметру насадки dz и массовой скорости газа G, характёризует подобие движения потоков  [c.456]

    Существенно, что рецикл приближает рабочую линию к равновесной кривой, т.е. сопровождается понижением движущей силы массообменного процесса — значит, и интенсивности процесса в целом. А чтобы в условиях рецикла сохранить эффективность процесса (т.е. необходимое значение выходной концентрации уг), придется увеличивать поверхность контакта фаз (например, путем увеличения габаритов аппарата). И тем не менее возможны технологические ситуации, когда рецикл целесообразен. Чаще всего это связано с плохим межфазным контактом при малых потоках одной из фаз или обеих фаз плохая смачиваемость жидкостью насадки в насадочном или стенки в пленочном аппарате, высокая поперечная неравномерность потока в барботажном аппарате и т.п. Рецикл способствует повышению интенсивности массообмена и поверхности контакта фаз. Нередко с помощью рецикла удается снизить температурный перепад вдоль аппарата и приблизиться к изотермическому проведению процесса, что может положительно сказаться на его селективности. В общем, при организации рецикла необходимо сопоставить его положительное и отрицательное влияние на процесс и оценить эффект в целом. В терминах структуры потоков рецикл представляет собой одно из проявлений обратного перемешивания (не распределенного по длине аппарата, а сосредоточенного). [c.802]

    Зернистые слои могут состоять ю моно- или полидисперсных частиц. В массообменных и каталитических процессах предпочтительнее использовать равные по размеру зерна, добиваясь при этом одинаковой степени отработки зерен или скорости внутренней диффузии компонента в каждом зерне. Монодисперсные элементы насадок обеспечивают равномерную плотность орошения в насадочных аппаратах, меньшее гидравлическое сопротивление и более высокую эффективность по сравнению с кусковой насадкой. Обычно в процессах получения или подготовки дисперсной твердой фазы (кристаллизация, грануляция, дробление) образуются зерна полидисперсного состава. Хотя в дальнейшем и предпочтительнее использовать частицы одного размера, однако необходимо учитывать дополнительные затраты, связанные с приготовлением монодисперсного материала. [c.556]

    Для расчета ректификации в колоннах с эффективной насадкой различными авторами предложены уравнения, приведенные в табл. П1-5. Авторы работ [26, 77] при изучении массопередачи без специальных экспериментов принимали, что К, у— т. е. осповное сопротивление массообмену оказывает паровая фаза. Поэтому из этих уравнений предпочтение следует отдать зависимостям (111-125), (111-131) и (111-132), поскольку они получены на базе опытов, в которых оценивали долю диффузионного сопротивления контактирующих фаз. [c.103]

    Оптимальный режим работы колонны достигается при скоростях газового (парового) потока, на 15—20% меньших скоростей, вызывающих захлебывание. Очевидно, что в этих условиях массообмен становится весьма эффективным, так как поверхность фазового контакта значительно превышает поверхность насадки. [c.297]

    Насадка для массообменных колонн, рассмотренная в работе [59], отличается малыми гидравлическими сопротивлениями и эффективностью. Насадка образована гофрированными элементами ячеистой структуры, поверхность которых покрыта сеткой. Растекание жидкости по насадке обусловлено действием копилярных сил. Пакеты таких элементов определенной длины располагаются в колонне, чередуясь под прямым углом. Описаны детали конструктивных элементов насадки. [c.67]

    Такими эффективными массообменными аппаратами являются насадочные и тарельчатые колонные аппараты. В насадочнык аппаратах развитая поверхность контакта фаз создается за счет использования различных насадочных тел, образующих при соответствующей укладке в аппарате систему извилистых каналов, которые имеют достаточно большую поверхность — примерно 80-700 м на 1 м объема рабочей зоны аппарата. Жидкость движется по поверхности каналов преимущественно в виде тонких 1шенок (0,1-5 мм), а газ занимает все оставшееся свободное пространство, объем которого также достаточно велик и составляет 70-96 % объема рабочей зоны аппарата. При перетекании жидкости с одного элемента насадки на другой пленка жидкости разрушается, а жидкость при этом перемешивается. На нижележащем элементе насадки образуется новая пленка. Структура потоков газа и жидкости в аппарате достаточно близка к поршневому противоточному движению. [c.27]

    Стадию карбонизации обратного рассола можно интенсифицировать применением эффективных массообменных аппаратов. Если вблизи рассолоочистной установки имеется источник газа, содержащего более 80% СОг, карбонизацию целесообразно проводить в колоннах с нерегулярной кольцевой насадкой- Обратный рассол (весь или часть) подают в верхнюю часть колонны, откуда он стекает вниз по насадке. Г аз проходит колонну снизу вверх и соприкасается с рассолом на всей поверхности насадки. Такие колонны при высокой концентрации СОг в газе весьма производительны, например производительность скруббера диаметром 1200 мм с насадкой высотой 6 м из колец Рашига размером 50x50 мм (при использовании 94%-ного углекислого газа) составляет 60 м /ч рассола степень использования СОг — примерно 10%. [c.105]

    Стремление получить наибольшую поверхность контакта часто обусловливает выбор мелкой насадки. Но не только геометрическая поверхность в единице объема определяет эффективность насадки. Крупная насадка позволяет использовать более высокие скорости массообменивающихся фаз, что интенсифицирует массообмен. Высокие скорости особенно целесообразны для хорошо растворимых сред. При массообмене плохо растворимых сред более эффективной может оказаться мелкая насадка. [c.59]

    Автору, очевидно, остались неизвестными многочисленные работы по гидродинамике и массообменной способности аппаратов с турбулентным трехфазным псевдоожиженным слоем, опубликованные на протяжении последних 6—8 лет советскими и зар жными исследователями. Это, естественно, значительно сузило объем информации по рассматриваемому вопросу, изложенной в данной главе. С целью восполнения этого пробела мы приводим список наиболее важных опубликованных работ [8-22]. В последних содержится достаточно обширная информация по ряду аспектов рассматриваемого процесса режимы трехфазного псевдоожижения начало полного ожижения и его зависимость от скоростей потоков ожижающих агентов, их физических свойств, а также от размеров и эффективной плотности элементов насадки динамическая высота слоя и газосодержание перепад давления в слое пределы существования трехфазного псевдоожиженного слоя интенсивность циркуляции элементов насадки в слое величина межфазной поверхности продольное перемешивание массообменная способность аппаратов с трехфазным псевдоожиженным слоем в процессах физн- -ческой абсорбции, хемосорбции и ректификации бинарных Жидких смесей. [c.675]

    Тепло-массообмен исследовали в контактном аппарате с турбулентным трехфазным псевдоожиженным слоем квадратного поперечного сечения 305 X 305 мм, заполненным полыми поли-этиленовымп шариками в качестве ожижающих агентов использовали воздух и воду. Было замечено, что в процессе абсорбции аммиака из смеси с воздухом высота единицы переноса (ВЕП) уменьшается с повышением расхода жидкости, но увеличивается с возрастанием расхода газа. Кроме того, отмечали падение ВЕП при уменьшении статической высоты слоя. Сравнение данных по абсорбции аммиака в аппаратах с неподвижной насадкой и с турбулентным трехфазным псевдоожиженным слоем показало, что последние более эффективны. [c.678]

    Оптимальный реншм работы колонны достигается при скоростях газового (парового) потока, на 15—20% меньших скоростей, вызывающих захлебывание. Очевидно, что в этих условиях массообмен становится весьма эффективным. Поверхность фазового контакта превышает поверхность насадки, а коэффициенты массоотдачи достигают предельных величин для агшаратов подобного типа. [c.327]

    Эффективным путем интенсификации массообменных процессов в колонных биореакторах за счет дополнительной турбулиза-ции среды и выравнивания профиля концентраций по сечению колонны является способ проведения процесса ферментации в присутствии плавающей насадки. Проведены экспериментальные и теоретические исследования работы колонного биореактора с плавающей насадкой, показавшие его высокую эффективность при проведении различных процессов микробиологического синтеза, в том числе при выращивании кормовых дрожжей на гидролизном и углеводородном субстрате, при культивировании мицелиальных культур, получении бактериальной биомассы и др. [c.207]

    Помимо уже упомянутых тарельчатых колонок (рис. 51) и колонок Бруна [в них используется принцип тарельчаты.х колонок (рис. 57)] применяются полые трубки и их разновидности (рис. 56), колонки, заполненные специальными насадками (рис. 58), и колонки с вращающимися массообменными устройствами (роторные колонки). Массо- и теплообмен между жидкой и паровой фазами, необходимый для ректификации, тем интенсивнее (т. е. эффективность колонки тем выше), чем больше поверхность соприкосновения обеих фаз. [c.73]

    НАСАДКИ в химической технологии, тела раэл. формы, помещаемые в колонный аппарат с целью создания развитой пов-сти контакта между в.чаимодействуюищми потоками фаз и уве/и1чення в результате этого эффективности теплообмена и массообмена. Используются в ряде химнко технол. процессов — абсорбции, ректификации, экстракции, конденсации и др. В насадочных массообмениых аппаратах жидкость тонкой пленкой покрывает Н. и стекает по ней, при этом пов еть контакта с газообразной фазой определяется нов-стью Н., св-вами жидкости и гидродинамич. режимом. [c.360]

    При увеличении масштабов и мощности реакционных, тепло- и массообменных и иных аппаратов, как правило, возрастает неравномерность распределения материальных потоков, интенсифицируется или ухудшается перемешивание, изменяются локальные и средние по объему межфазные пов-сти контакта, появляются застойные зоны, каналы и т.д. Причины-увеличение масштаба турбулентности или возникающих циркуляц. контуров, изменение параметров конструкц. элементов аппаратов (распределит, и теплообменные устройства, насадки и др.) вследствие разл. условий их изготовления и эксплуатации. Напр., в колонных барботажных аппаратах эффективные коэф. перемешивания возрастают по ф-ле О, В колонных массо- [c.664]

    Отмечено, что в литературе нет достаточно универсальных критериальных уравнений для вычисления коэффициента массотдачи в жидкой фазе для насадок с вертикальными стенками, несмотря на то, что эти насадки характеризуются высокой эффективностью при низком гидравлическом сопротивлении. В работе [72] предложено такое уравнение. Оно описывает все известные экспериментальные данные со средней погрешностью 3,4 %. Следует отметить, что такая малая пофешность расчета вызывает сомнение, так как пофешность экспериментов по массообмену в двухфазных средах в несколько раз больше. [c.70]

    I. Насадка для тепло - и массообменных аппаратов выполнена в виде полого тела вращения, с расположенными одна против другой выгнутыми наружу полосами листового материала с зазором между смежными полосами и ребрами вдоль образующей, отличающейся тем, что с целью повышения эффективности тепло - и массообмена за счет турбулизации взаимодействующих фаз полосы выполнены в виде фрагментов боковых поверхностей конусов, вершины которых направлены к ближайшему для соответствующей полосы ториу насадки, а диаметр насадки уменьшается от ее середины к торцу. [c.168]

    Рещ1ркуляц11я абсорбента. При малых расходах Ь, т.е. при низких плотностях орошения Ь/(/ р) абсорбента, жидкости может оказаться недостаточно для хорошего смачивания элементов насадки. В этом случае в массообмене участвует лишь часть ( активная ) поверхности насадочных тел / а < Г. Отсюда — низкая эффективность работы аппарата в целом. При рециркуляции абсорбента в работу включается дополнительная поверхность контактирования жидкости и газа, так что Г. Кроме того, растет коэффициент массоотдачи в жидкой фазе за счет турбулизации пленочного течения такой рост особенно эффективен в случае низкой пропускной способности Если при этом увеличение пропускной способности стадии массоотдачи И массопередачи в целом кхР (или куР) компенсирует уменьшение движущей силы и дополнительные затраты энергии на перекачку абсорбента снизу вверх, то рециркуляция абсорбента оправдывает себя. Ее применение также целесообразно при необходимости отвода большой теплоты абсорбции на линии возврата абсорбента устанавливают холодильник (на рис. 11.20, а не показан). О необходимости поддержания рабочей температуры процесса за счет охлаждения жидкости подробнее см. в разд. 11.2.2. [c.937]

    Например, при физическом описании процесса ректификации смесей вьщеляют следующие "элементарные процессы 1) гидродинамика потоков жидкости и пара в колонне 2) массообмен между жидкостью и паром 3) теплопередача между жидкостью и паром 4) испарение жидкости и конденсация пара. Все указанные элементарные процессы протекают либо на тарелке, либо в насадочной секции колонн и прямо связаны между собой. Полное описание этих процессов представляет собой чрезвычайно сложную систему уравнений. Только описание гидродинамики потока жидкости на тарелке (либо в насадке) с помощью уравнения Навье-Стокса представляет собой задачу чрезмерной вычислительной сложности. Не менее сложно и решение задачи полного описания массообмена между потоками жидкости и пара. Вместе с тем эти задачи должны решаться совместно как единая система уравнений. Отсюда следует, что без разумнььх упрощающих допущений здесь не обойтись. Поэтому обычно принимают идеализированное представление относительно движения потоков пара и жидкости (пар движется в режиме полного вытеснения, а жидкость полностью перемешивается на тарелке), а массопередачу выражают через эффективность ступеней разделений, определяемую в большинстве случаев полузмпирическими методами, либо вообще не рассматривают ее, считая, что на каждой ступени разделения достигается равновесие. [c.12]

    Важное место при описании работы насадочных аппа" ратов занимают вопросы масштабного перехода. Это связано с тем, что при увеличепни диаметра массообменных аппаратов их эффективность обычно существенно ухудшается, хотя все элементы конструкций (например, размер и тип насадки) остаются неизменными. Причиной этого является неравномерное распределение потоков по сечению колонны и каналообразование в слое насадки. Поперечная неравномерность возрастает при увеличении диаметра аппарата, а полезная радиальная диффузия уменьшается, причем вероятность подобных нарушений, по-видимому, пропорциональна площади сечения аппарата. [c.107]


Смотреть страницы где упоминается термин Насадка эффективность массообмена: [c.4]    [c.215]    [c.121]    [c.161]    [c.325]    [c.105]    [c.156]    [c.298]    [c.177]   
Очистка технологических газов (1977) -- [ c.75 ]




ПОИСК





Смотрите так же термины и статьи:

Массообмен



© 2025 chem21.info Реклама на сайте