Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Амины алифатические, окисление

    Показано, что введение оптимального количества ПАВ "Амины алифатические" приводит к снижению динамической вязкости сырья при нормальных условиях, а в случае его окисления - к увеличению доли асфальтенов в получаемом битуме. [c.4]

    При температуре 175°С масса исследуемого вещества начинает уменьшаться, причем скорость изменения массы, фиксируемая на дифференциально-термогравиметрической кривой, возрастает вплоть до 250°С и далее остается неизменной, и при нагреве до 300°С масса образца исследуемого ПАВ уменьшается практически на 40%. Очевидно, что именно при температурах выше 175°С начинается разложение "Аминов алифатических", сопровождаемое возгонкой продуктов расщепления. При температурах выше 290°С наблюдается значительный экзотермический эффект за счет реакций окисления. [c.9]


    Эффективность влияния активирующих добавок оценивали по изменению глубины окисления сырья, а именно, по температуре размягчения битума по КиШ. Окисление нефтяных остатков осуществляли при температуре 250°С, расходе воздуха 1,5 л/мин и продолжительности процесса 150 мин. Среди исследованных поверхностно-активных веществ различных типов наибольшее интенсифицирующее воздействие оказывает катионоактивное ПАВ "Амины алифатические" (см. рис. 3). При его концентрации в исходном сырье, равной 0,05 мас.%, достигается максимальная температура размягчения битума, и снижается пенетрация при 25°С. Как показано на рис.1, при таком содержании "Аминов алифатических" в исходном сырье аномально снижается динамическая вязкость нефтяного остатка. [c.10]

    Как видно из в табл. 1, в случае использования данного поверхностноактивного вещества в качестве активирующей добавки можно получать окисленный битум, температура размягчения которого по КиШ равна 53°С при уменьшенном на 15% расходе воздуха (с 1,5 до 1,28 л/мин). Кроме того, применение данного ПАВ позволяет снизить температуру проведения процесса почти на 10°С. Присутствие в исходном сырье 0,05 мас.% "Аминов алифатических", дает возможность сократить продолжительность процесса окисления от 240 до 210 мин. [c.12]

    Известно, что увеличение удельной поверхности контакта фаз газ жидкость приводит к ускорению протекания процесса, в связи с чем было изучено влияние ПАВ "Амины алифатические" на процесс получения окисленного битума при различной организации воздушного потока (табл. 2). Установлено что, добавление к сырью оптимального количества ПАВ с одновременным диспергированием воздушного потока оказывает дополнительное положительное воздействие на исследуемый процесс. [c.12]

    Влияние присутствия в исходном сырье ПАВ "Амины алифатические" на технологические параметры процесса получения окисленных битумов [c.13]

    Влияние механического диспергирования воздушного потока на показатели качества окисленного битума, полученного в присутствии ПАВ Амины алифатические  [c.14]

    Наряду с окисленными битумами, в качестве связующего для приготовления асфальтобетонных смесей могут применяться остаточные битумы, представляющие собой или высококонденсированные остатки от перегонки нефти, или продукт деасфальтизации гудрона пропаном - асфальт. Производимые в ООО "ЛУКОЙЛ - Пермнефтеоргсинтез" гудроны и асфальты не удовлетворяют по своим показателям требованиям к дорожным битумам и поэтому предварительно подвергаются окислению кислородом воздуха при повышенных температурах. Другим способом их переработки является получение компаундированных битумов на основе окисленных и остаточных нефтепродуктов. Использование в качестве компонента битумов, окисленных в присутствии катионного ПАВ "Амины алифатические", позволяет получать компаундированные битумы с улучшенными пластическими свойствами (табл. 4). Однако поскольку в этом случае [c.14]


    Влияние срока хранения сырьевой смеси на эффективность влияния добавки ПАВ Амины алифатические в процессе получения окисленного битума [c.15]

    Влияние ПАВ "Амины алифатические" на соотношение основных компонентов окисленного битума и его показатели качества [c.16]

    В пятой главе представлены результаты опытно-промышленных испытаний использования ПАВ "Амины алифатические" в качестве активирующей добавки к исходному сырью при производстве окисленных битумов. Статистическая оценка влияния добавок данного ПАВ на параметры проведения процесса и характеристики получаемого окисленного битума приведены в табл. 7. [c.16]

    Статистическая оценка влияния добавок ПАВ "Амины алифатические" в исходное сырье на параметры проведения процесса и характеристики получаемого окисленного битума [c.18]

    Исследовано влияние добавок поверхностно-активных веществ на процесс получения окисленных битумов. Установлено, что интенсифицирующее воздействие оказывают катионоактивные ПАВ, в частности, "Амины алифатические" при оптимальной концентрации в исходном сырье 0,05 мас.%. [c.18]

    Экспериментами, проведенными на лабораторной установке, показана эффективность использования ПАВ "Амины алифатические" в качестве интенсифицирующей добавки, вызывающей увеличение степени окисления битумов. В этом случае при всех прочих равных условиях можно получать более окисленный битум, или сократить продолжительность проведения процесса на 12,5 %, или уменьшить расход воздуха на 15 %, или снизить температуру окисления с 250 до 240°С. Установлено, что применение поверхностно-активного вещества "Амины алифатические" эффективно при различной организации воздушного потока и вызывает снижение содержания кислорода в отходящих газах окисления с 3 до 1,5 об.%. [c.19]

    Активирующие свойства "Аминов алифатических" сохраняются при длительном хранении приготовленной сырьевой смеси. На основе битумов, окисленных в их присутствии, можно получить компаундированные битумы с лучшим сочетанием эксплуатационных характеристик. [c.19]

    Результаты лабораторных исследований по интенсификации процесса получения окисленных битумов за счет введения в исходное сырье поверхностно-активных веществ были подтверждены в ходе опытнопромышленных испытаний на установке получения окисленных битумов 19-10 ООО "ЛУКОЙЛ-Пермнефтеоргсинтез". Подтверждено, что катионное ПАВ, в частности, "Амины алифатические", оказывает интенсифицирующее воздействие на процесс окисления нефтяных остатков. Полученный битум обладает улучшенными показателями качества, при этом снижается почти на 7% расход воздуха и на ТС температура проведения процесса. [c.19]

    Ароматические амины в отличие от аминов алифатического ряда, легко окисляются. Например, хромовая смесь превращает анилин в черный анилин — краситель черного цвета, который применяется в технике. Так, пигмент глубоко-черный — продукт окисления анилина, используется для окраски полимеров. [c.287]

    Амины. Алифатические амины восстанавливаются на капельном ртутном электроде при очень высоких отрицательных по-тенциалах Аналогично ведут себя ароматические амины. Показано, что ароматические амины гладко окисляются на микро-платиновом электроде з, образуя на полярограмме одну волну окисления. Гетероциклические амины, например аминоакридины , восстанавливаются полярографически. Потенциалы полуволн зависят от pH среды. [c.35]

    При окислении алифатических аминов многократный обрыв цепей наблюдается не только при торможении ароматическими аминами, но и фенолами. Значения нестехиометрических коэффициентов / для разных ингибиторов в алифатических аминах меняются от 5 до 50. [c.119]

    Аналогичным свойством — двойственной реакционной способностью — обладают пероксидные радикалы, возникающие при окислении алифатических аминов [3 5]  [c.198]

    Значительный интерес в качестве антиокислительных присадок представляют азотсодержащие соединения. Наибольшее распространение из них получили алифатические, ароматические и гетероциклические амины и их производные. Амины так же, как фенолы, в основном являются низкотемпературными антиокислителями и проявляют эффективность до 100—120 °С, вследствие чего их можно применять для стабилизации трансформаторных, турбинных и других маловязких масел, работающих при низких температурных режимах (до 140 °С). При более высоких температурах азотсодержащие соединения сами окисляются и не могут замедлять или останавливать процесс окисления. [c.20]

    Алифатические амины. Кроме ароматических аминов для стабилизаций минеральных и синтетических масел против окисления используются алифатические амины [пат. США 3493512], различные производные мочевины [пат. США 2683083] и азотсодержащие соединения, среди которых наибольшее применение нашли вещества, в молекулы которых входят группы пиперидина, мор-фолина и пиперазина [пат. США 3862130]. [c.175]


    Основные компоненты окисленный петролатум, лак МС-080, алифатические амины, сульфонат кальция, ксилол. [c.392]

    Из других процессов каталитического окисления в алифатическом ряду интерес представляет окисление первичных аминов в альдегиды  [c.206]

    Пиперидин является сильным основанием и имеет запах средних алифатических аминов с водой смешивается во всех соотношениях. Т. кип. 1067757 мм, т. пл. —13°. По отношению к окислителя.м на холоду он достаточно устойчив, но при нагревании медленно окисляется, причем в зависимости от условий окисления происходит расщепление до различных аминокислот  [c.1019]

    При окислении алифатических аминов амины ароматические и нитроксильные радикалы многократно обрывают цепи  [c.162]

    Наряду с жидкими и газообразными окислителями для очистки сточных вод применяются и твердые оксиды и гидроксиды металлов переменной валентности (никеля, кобальта, меди, железа, марганца). Гидроксид никеля высшей валентности легко окисляет тидразингидрат, спирты, альдегиды, алифатические и ароматические амины. Продуктами окисления являются в основном карбонаты, азот и вода. Метод рекомендуется для обезвреживания сточных вод с концентрацией токсичных соединений до 0,5 г/л, что является его недостатком. [c.494]

    Регенерация ингибиторов при окислении алифатических аминов. Алифатические амины окисляются цепным путем с участием а-аминопероксидных радикалов. Эти радикалы, как и пероксидные радикалы спиртов, обладают восстановительной активностью, что приводит к регенерации ингибиторов в актах обрыва цепи, видимо, по реакции [219] [c.119]

    Вторичные алифатические нитрамины можно получать нитрованием вторичнвос аминов и окислением нитрозаминов. [c.537]

    На рис. 5 показано влияние концентрации ПАВ "Амины алифатические" в исходном сырье на содержание кислорода в отходящих газах окисления. Использование данного поверхностно-активного вещества приводит к снижению количества кислорода в газах окисления сЗдо 1,5-2 об.%. [c.12]

    Установлено, что из сырьевой смеси, хранившейся при комнатной температуре в течение 25 суток, получается менее окисленный битум (табл. 3). Однако вводимое в исходное сырье ПАВ "Амины алифатические" сохраняет свои интенсифицируюш,ие свойства даже при длительном хранении сырьевой смеси. [c.14]

    При обсуждении реакций соединений, содержащих амино-группу, ароматические амины, алифатические амины, в том числе насыщенные гетероциклические соединения, амиды и четвертичные аммониевые соли, удобнее рассматривать по отдельности. Амины и амиды могут окисляться на аноде начальной стадией окисления является отщепление электрона от неподеленной электронной пары атома азота или от системы, с которой эти электроны сопряжены. Соответственно, четвертичные соединения, протонированные амины и амиды, а также соли, имеющие четыре связи углерод — азот, не окисляются. Некоторые ароматические амины активны в кислых растворах, поскольку они являются очень слабыми основаниями. Амины и амиды обычно не восстанавливаются, если они не содержат обширных. тт-электроннйх систем, способных принимать электроны. Однако четвертичные соединения обычно восстанавливаются при этом либо образуются нейтральные радикалы, либо происходит восстановление протонов до водорода. [c.242]

    Все эти данные показывают [74], что антиокислительное действие аминов является результатом обратимого образования комплекса фенолов — образования комплекса и отнятия атома водорода. Результаты изучения антиокислительной активности триалкиламинов при окислении кумола привели к выводу, что в области низких концентраций механизм их действия основывается на эффекте Бузера — Хаммонда [152] при высоких концентрациях амина скорость аутоокисления в присутствии антиокислителя не зависит от концентрации амина. Это указывает на то, что комплексы кумильного пероксирадикала с триалкиламином, наряду с реакциями Бузера — Хаммонда, характерными для активных антиокислителей типа дифениламина, вступают в реакции распространения и обрыва цепи. Рассмотренные выше вьшоды вполне допустимы, так как при взаимодействии с алифатическими аминами гидроперекиси арилалкилов превращаются в спирты. При этом выделяется кислород и образуется вода в количестве, эквивалентном потере кислорода [17]. Последнее указывает на расходование части амина. Исследования окисления первичных, вторичных и третичных алифатических аминов гидроперекисью трет-бутила при 60—110 °С показали, что первичные и вторичные амины, содержащие [c.316]

    Методы очистки сточных вод от аминов. Алифатические амины, содержащиеся в сточных водах, на очистных сооружениях подвергаются биохимической очистке на 90% [5]. При окислении кислородом и озоном можно извлечь из сточных вод 99% аминов [6]. В каждом конкретном случае необходимо либо разбавлять стоки с большим содержанием аминов, либо применять двухступен-чат5т0 очистку, а в ряде случаев — применять интенсивные методы окисления кислородом или озоном. [c.23]

    Как показал Бамбергер [143], нитропарафины можно получить окислением первичных алифатических аминов. Браун и Шрайнер [144], л также Турстон и Шрайнер [145] разработали реакцию взаимодействия металлической соли ациформ нитропарафинов с галоидным алкилом, при которой образуются сложные эфиры нитроновой кислоты или нитропарафины  [c.315]

    К числу соединений, реагирующих с гидропероксидами и образующих молекулярные продукты, относятся некоторые амины и аминосульфиды, сульфиды, меркаптаны, дисульфиды, тииль-ные радикалы, алифатические фосфиты и ароматические фосфиты с неэкранированными феноксилами [43, 44]. Наиболее активными ингибиторами окисления из перечисленных сернистых соединений считают сульфиды, у которых атом серы соединен с алифатическими или циклоалифатическими радикалами, — очевидно, благодаря предварительному образованию меркантильного или феноксисульфидного свободных радикалов 45]. [c.44]

    Аминофенолы. Из табл. 5.11, в которой представлены результаты испытаний аминофенолов, видно, что ингибиторы 1—3 имеют эффективность ниже чем поиол, что объясняется, по-видимому, наличием в молекулах этих ингибиторов третичных атомов азота и неэкраиированных ОН-групп. Остальные аминофенолы имеют величину /С >1. Величина К зависит от структуры ингибитора. Если ЫН-группа находится в алифатической цепи, то она слабо влияет на эффективность ингибитора, которая в этом случае зависит от числа экранированных ОН- и НН-групп, примыкающих к ароматическому ядру, и пропорциональна их числу (ингибиторы 5,10—14,17—19,22). Наиболее эффективными аминофенолами, как и в случае аминов, являются ингибиторы, у которых ЫН-группы расположены между ароматическими ядрами. Подобная закономерность наблюдается для аминофенолов и при инициированном окислении. [c.176]

    Проявление тех или иных свойств определяется природой СС. Хорошими антикоррозионными присадками могут служить дисульфиды и ксантогенаты [568], противоизносными агентами — алкил- и арилмеркаптаны [571]. Заметной анти-окислительной активностью обладают меркаптаны [578], тиацикланы, диалкил- и алкилциклоалкилсульфиды с длинными алифатическими цепочками [579], а также получаемые из них сульфоксиды [580]. Кроме того, благодаря синергетическим явлениям насыщенные СС значительно повышают эффективность действия других ингибиторов радикально-цепных реакций (окисления, термо- и фотодеструкции, полимеризации), например фенольного и аминного типа [581]. Считается, что антиокислительное действие СС обусловлено их участием в реакциях безрадикального разрушения пероксидов и гидроперекисей [582], например  [c.80]

    Стабильная к окислению композиция состоит из масла и антиокислительной присадки — алифатического амина С — С50 (например, триоктил- или додециламина), алкилселенида или алкил-фосфина С1 — С50 и соединения переходного металла (Си, Мп, Сг, Ре, Со), например нафтената кобальта или меди и др. пат. США 377846]. Патентуется синергетическая композиция пат. США 4122021] антиокислителей для смазочных масел, состоящая из фенилнафтиламина без боковых цепей или с радикалами (алкил С1—С12, арил Сб—С20, аралкил или алкиларил С7—С20) в количестве 0,15—3 % и маслорастворимого диарил- или арилалкил-сульфоксида. Соотношение сульфоксида и фенилнафтиламина 1 1 -Ь 10. Композиция может содержать также различные соли меди — нафтенаты, стеараты и др. [c.56]

    Механизм действия алифатических аминов и производных мочевины отличается от механизма действия классических ингибиторов окисления. Эти соединения почти не влияют на поглощение кислорода, но значительно снижают образование осадка в углеводородах. Такие присадки, как изопропилоктадециламин или содержащие азот в цикле, например сополимеры эфиров метакриловой кислоты с 5-винилпиридином или с р-диэтилэтаноламином, препятствуют превращению коллоидных часпщ в более крупные, выпадающие в осадок [217, 218]. [c.175]

    В качестве ингибиторов окисления и противокоррозионных присадок к дистиллятным топливам предлагается добавлять нейтральные соли кислых изоалкилфосфатов С13— ie в смеси с алифатическими аминами Се—С24 (желательно первичными) [пат. США 3228758]. Стабилизатором дизельного топлива может служить продукт конденсации жирного диамина RR N—NHj (где R = алкил Сю—С22, лучше i6— ia R = алифатический радикал Са—Са, например триметилен) и алифатического альдегида i—С4. Для повышения стабилизирующего эффекта этой присадки к топливу добавляют деактиваторы металлов, в частности Ы,Ы -дисалицил-иден-1,2-пропилендиамин [пат. США 3053645]. [c.263]

    Высокой эффективностью в улучшении термической стабильности реактивных топлив обладают и беззольные присадки типа алифатических аминов, особенно вторичных, и целый ряд других соединений [19, 37—45]. Фильтруемость топлива типа Т-1, например, улучшается при добавлении таких присадок, как окисленный петро-латум, его магниевая соль, многофункциональная присадка ВНИИ НП-111а, сульфонат кальция, а также без-зольная моющая присадка к маслам типа сукцинимидов (рис. 35) [6]. Общим свойством всех этих соединений является их диспергирующее действие, связанное с поверхностной активностью. [c.149]

    Термоокислительную стабильность топлив можно повысить с помощью гидроочистки или гидрирования топлива и введением присадок. Однако известные антиокислители при повышенных температурах топлив быстро срабатываются, слабо влияют на процессы окисления и практически не влияют на смоло- и осадкообразование в топливах. Для повышения термо-окиспительной стабильности топлив эффективны диспергирующие присадки, тормозящие процессы укрупнения и коагуляции молекул окисленных продуктов. Среди таких соединений наиболее известны алифатические высокомолекулярные амины ( например, изопропилоктадециламин) и сополимеры эфиров метакриловой кислоты в концентрации 0,001- 0,3%. Однако, несмотря на большую потребность, до настоящего времени присадки такого типа не нашли широкого применения в реактивных и дизельных топливах. [c.88]


Смотреть страницы где упоминается термин Амины алифатические, окисление: [c.536]    [c.9]    [c.12]    [c.433]    [c.227]    [c.401]    [c.38]    [c.45]   
Микробиологическое окисление (1976) -- [ c.196 ]




ПОИСК





Смотрите так же термины и статьи:

Амины алифатические



© 2025 chem21.info Реклама на сайте