Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поглощения спектры источники излучения для

    Предполагая, что в пламени существует локальное термодинамическое равновесие (ЛТР), зная состав топлива и окислителя, а также их соотношения, можно рассчитать температуру пламени. Существуют различные экспериментальные методы определения температуры пламени. Например, хорошо известным методом является метод обращения спектральных линий атома натрия, в котором пламя, содержащее следы натрия, просвечивается источником излучения с известной температурой. Линии натрия в спектре пламени будут видны на фоне спектра источника излучения как линии испускания, если температура источника ниже температуры пламени, -и как линии поглощения, если температура источника выше температуры пламени. При равенстве температур интенсивность линий натрия не будет отличаться от интенсивности источника излучения с известной температурой. [c.56]


    Очевидно, что для выделения с помощью монохроматора из непрерывного спектра источника излучения спектрального интервала, равного по ширине спектральной линии поглощения в атоме, необходимо, чтобы монохроматор имел реальную разрешающую способность Я = к/АХ, где X — длина волны, соответствующая центру спектральной линии, а АЯ — ее полуширина. [c.132]

    Выделение света. Использование света достаточно узкого интервала длин волн имеет большие преимущества при проведении фотохимических реакций. В этих условиях оказывается возможным непосредственно и точно определить величины, необходимые для вычисления квантового выхода, интенсивности падающего и доли поглощенного света. Узкий спектральный интервал позволяет также устранять нежелательные фотохимические превращения продуктов реакции. Выделение света определенной длины волны из спектра источника излучения может осуществляться при помощи монохроматоров и светофильтров. [c.141]

    Колебания свойственного молекуле гармонического или ангармонического осциллятора возбуждаются под действием электромагнитного излучения соответствующей частоты. Следовательно, чтобы определить, излучение каких частот молекула поглощает, необходимо сравнить энергетический спектр источника излучения (/о(у)) со спектром излучения, прошедшего через исследуемый образец (/( )). Спектр поглощения вещества характеризуется, как правило, либо спектром пропускания 7 (v), либо спектром оптической плотности 0(у). Пропускание — это доля световой энергии, пропущенная образцом Г = — иногда используют про- [c.432]

    В зависимости от области электромагнитного спектра применяют различные экспериментальные методы и приборы. Чтобы наблюдать спектры поглощения, необходимы источник излучения, кювета с изучаемым веществом, установка для получения монохроматического излучения (с определенной длиной волны) с призмами или дифракционной решеткой, приемник для измерения интенсив-, ности излучения (падающего и прошедшего через образец) и регистрирующая установка. [c.49]

    В каждом приборе, используемом для анализа спекТра, имеется источник излучения, монохроматор (призма или решетка для разложения спектра) и необходимое регистрирующее устройство. В эмиссионной спектроскопии само исследуемое вещество служит источником излучения. В случае спектров поглощения применяется источник излучения с непрерывным спектром. Исследуемое вещество находится между источником излучения и монохроматором или между монохроматором и приемником. [c.419]


    В приборе имеется два канала — рабочий и сравнительный, освещаемых общим источником излучения 1. Через рабочую б и сравнительную 6 кюветы прокачивается анализируемый воздух. Рабочий светофильтр 5 выделяет из спектра источника излучения область поглощения, характерную для измеряемого компонента. Сравнительный же светофильтр 5 пропускает излучение, не поглощаемое измеряемым компонентом. На приемник 7 периодически поступают сигналы с каждого канала, которые дальше сравниваются. Амплитуда выходного сигнала пропорциональна разности интенсивностей излучения в каналах. Этот сигнал служит мерой концентрации определяемого компонента в воздухе. [c.266]

    Молекулярный спектральный анализ ведется в основном по спектрам поглощения и главным образом в инфракрасной области. На фоне сплошного спектра источника излучения наблюдаются отдельные линии и полосы поглощения. Для применяемых тепловых источников (лампа накаливания, штифт Нернста, силитовый стержень) их спектральная яркость в узком интервале длин волн может считаться постоянной. Тогда, как было выяснено в п. 3, поток Р сплошного спектра через выходную щель одинаков, независимо от ее положения в спектре и от вида аппаратной функции монохроматора  [c.129]

    Все спектрометры, предназначенные для измерения спектров поглощения, подразделяются на две группы — однолучевые и двухлучевые. Однолучевым спектрометром называется прибор, в котором процесс получения спектра (например, спектра коэффициента пропускания Т) требует последовательного выполнения двух операций — сначала измерения спектра источника излучения без образца (/о), а затем излучения источника, прошедшего через образец (У). Блок-схема такого прибора показана на рис. 5.10. Смысл обозначений тот же, что на рис. 5.1. Полученные в результате опыта спектрограммы (рис. 5.11) нуждаются в дополнительной обработке с целью нахождения значений Т = ///о, т. е. требуют проведения довольно кропотливых графических измерений и расчетов. По этой причине однолучевые спектрометры имеют в настоящее время сравнительно ограниченную применимость, хотя и обладают некоторыми важными достоинствами. Так, при проведении особо тонких спектроскопических экспериментов в узких спектральных интервалах многие исследователи предпочитают пользоваться именно однолучевыми спектрометрами. [c.139]

    Во многих случаях вопрос о коэффициенте поглощения значительно упрощается, так как часто можно принять, что местные коэффициенты а-), не зависят от длины волны. Тела, у которых ах не зависят от длины волны, называются серыми. В этих случаях средний коэффициент поглощения а не будет зависеть от распределения энергии в спектре, т. е. от температуры источника излучения. Следовательно, а будет зависеть только от температуры поглощающего тела (применимость закона Кирхгофа). [c.300]

    В видимой части спектра цвет раствора, воспринимаемый глазом, есть результат избирательного поглощения определенного участка спектра из непрерывного белого излучения источника. Цвет раствора — это дополнительный цвет к цвету поглощенного излучения, т. е. если сложить поглощенное и дополнительное излучение, получится белое излучение. Искать поглощение в видимой области у бесцветных растворов бессмысленно. [c.11]

    Чаще всего применяют поглощение в УФ, реже в ИК области. В УФ области применяют приборы, работающие в широком диапазоне—от 200 нм до видимой части спектра, либо на определенных длинах волн, чаще всего на 280 и 254 нм. В качестве источников излучения применяются ртутные лампы низкого давления (254 нм), среднего давления (280 нм) и соответствующие фильтры. [c.91]

    Помимо величины длины волны спектральная линия имеет еще одну очень важную для спектрального анализа характеристику — интенсивность. Интенсивность спектра испускания связана с энергией, испускаемой возбужденными атомами (молекулами) в источниках излучения, а спектров поглощения — с энергией, поглощаемой атомами (молекулами) вещества. Интенсивности спектров зависят от вероятностей переходов и от заселенностей уровней, начальных для этих переходов. [c.7]

    Конструктивно прибор выполнен в виде письменного стола, на котором в массивном литом корпусе помещается монохроматор. Передняя стенка монохроматора представляет собой пульт управления прибором. В левой тумбе стола помещается блок питания прибора. Пульт управления блока писания расположен на передней стенке левой тумбы. На пульте имеются выключатели прибора, кондиционера и источника инфракрасного излучения. Там же расположены предохранители и амперметр для измерения тока в источнике излучения. В правой тумбе прибора размещена усилительная схема прибора и замедлитель, который регулирует скорость записи спектра при резком изменении поглощения. На передней панели правой тумбы выведены выключатели усилителя и замедлителя и рукоятки установки усилителя и замедлителя. [c.51]


    В настоящее время эти проблемы решены различными способами. Повышены интенсивность источников излучения и чувствительность детекторов. По существу, эти части установок для кругового дихроизма могут быть одинаковыми с таковыми в спектро-поляриметрах для измерений дисперсии оптического вращения. В связи с тем, что неизвестно такое дихроичное вещество, для которого один из коэффициентов поглощения е или бг был бы очень мал, принципиальным является узел прибора для формирования лучей с круговой поляризацией. Для этого используется так называемая четвертьволновая пластинка. [c.197]

    Спектрофотометр СФД-2 (СФД-2 м). Спектрофотометр СФД-2 предназначен для изучения спектров поглощения жидких веществ, растворов и веществ в твердом состоянии в области спектра от 220 до 1000 нм. В приборе установлено два источника излучения — во- [c.40]

    Колебательная инфракрасная спектроскопия (ИК-спектроскопия) наряду с электронной спектроскопией в видимой и ультрафиолетовой области — один из важных источников информации о строении молекул. Для получения инфракрасных спектров поглощения используют специальные приборы — инфракрасные спектрометры. Принцип действия их сходен с принципом действия спектрофотометров. Однако для этой области спектра используются специфические источники излучения, специфические методы регистрации излучения и специальные материалы для призм и кювет. [c.155]

    Если исследуется не спектр испускания самого источника излучения, а спектр поглощения вещества, то оптическая схема освещения щели выглядит иначе. Одним из основных требований остается требование наиболее полного использования светосилы спектрального прибора. Кроме того, источник излучения должен быть расположен относительно щели таким образом, чтобы между ним и щелью могла быть расположена кювета с поглощающим веществом. Излучение должно проходить через кювету таким образом, чтобы просвечиваемый объем определяемого вещества был бы максимальным. [c.32]

    Необходимо, чтобы источник излучения имел достаточно большую интенсивность для всех участков спектра в области его применения. Источники с большой яркостью позволяют заметно увеличить чувствительность абсорбционного анализа и получить лучшее разделение близких ПОЛОС поглощения. Обычно также требуется высокая стабильность свечения в течение длительного времени. [c.298]

    Фотоэлектроколориметр ФЭК-М имеет стеклянную оптику, прозрачную только для лучей видимого участка спектра. В качестве источника излучений служит лампа накаливания (вольфрамовая лампа), дающая излучение в видимой части спектра. Селеновые фотоэлементы чувствительны только к, излучениям видимого участка спектра. Следовательно, данный прибор пригоден для измерений в интервале 400— 700 нм. Кроме того, для работы в этом интервале прибор снабжен тремя светофильтрами с полушириной пропускания 80—100 нм (см. рис. 68) и поэтому его используют только при определении концентрации. Он непригоден для изучения спектров поглощения. [c.247]

    Работа прибора осуществляется по двухлучевой схеме с использованием нулевого метода. Радиация от источника излучения направляется по двум каналам в одном канале помещается исследуемый образец, в другом — образец сравнения и фотометрический клин. С помощью прерывателя пучки света из обоих каналов попеременно проходят через монохроматор, разлагаются в спектр и поступают на приемник радиации — болометр. Призма монохроматора медленно поворачивается, в результате чего на болометр падает излучение с постепенно возрастающей длиной волны. Пока исследуемый образец не поглощает излучения, интенсивность пучков света в обоих каналах одинакова. При появлении поглощения на болометр падают пучки различной интенсивности. Благодаря этому автоматически начинает перемещаться фотометрический клин, уменьшая до нуля возникшую разность интенсивности пучков. [c.84]

    Лучшие образцы современных УФ-спектрофотометров работают в области от 185 до 850 нм. Нижний предел определяется качеством оптической системы и интенсивностью источника излучения. Для снятия спектров ниже 200 нм оптика прибора должна быть изготовлена из специального кварца, а монохроматор при работе продувают сухим азотом, чтобы устранить сильное поглощение кислорода и паров воды в этой области. Длинноволновая граница прибора определяется чувствительностью детектора. В некоторых приборах ставят дополнительный сменный детектор (обычно фотосопротивление), что позволяет использовать такой спектрофотометр в ближней инфракрасной области (до [c.15]

    Для исследования спектров поглощения обычно не требуются излучения очень высокой интенсивности, но чтобы неравномерное распределение линий в спектре источника излучения не накладывалось на спектр поглощения вещества, необходимо, чтобы спектр источника был непрерывным, т. е. содержал все длины волн исследуемой спектральной области. Источники излучения, применяющиеся для исследования спектров поглощения, подробно рассмотрены в главе XXIV Спектроскопия и спектрофотометрия , т. IV 122], стр. 34. Для видимой области спектра можно использовать обычную лампу Мазда, а для ультрафиолетовой области наиболее подходящей, по-видимому, является разрядная водородная трубка. [c.224]

    Спектрометр ИК.С-12 работает по однолучевому методу. Радиация от источника инфракрасного излучения проходит через исследуемый образец и поступает в монохроматор. Монохроматический пучок света попадает на приемную площадку термоэлемента, вследствие чего на спае термоэлемента возникает э. д. с., которая усиливается фотоэлектрооптическим усилителем и приводит в действие перо записывающего устройства. Полученную таким образом спектральную кривую сопоставляют со спектром источника излучения. Расчетно-графическая обработка этих двух кривых позволяет сравнительно легко определить спектр поглощения исследуемого образца. [c.33]

    Величина Kthr учитывает потери, обусловленные пороговым (квантовым) характером поглощения света в полупроводнике. Как было показано в разд. 1.2, собственное поглощение света, приводящее к образованию пар электрон-дырка, возможно лишь при такой энергии кванта, которая, в зависимости от типа межзонного перехода, равна ширине запрещенной зоны или несколько превышает ее hv Е . При таком характере поглощения преобразование энергии немонохроматического света, каким является солнечный свет, сопряжено с неизбежными потерями. Действительно, кванты меньшей энергии, чем Е , попросту не способны к генерации электронно-дырочных пар. Но и кванты с энергией, превышающей Е , не используются полностью излишек энергии рассеивается, нагревая полупроводник, но не увеличивая сколько-нибудь заметно число носителей тока. Так, по оценке [49] для кремния из-за недостаточной энергии фотонов теряется около 24% энергии солнечного света, в то же время более 32% избыточной энергии квантов превращается в теплоту. Значение К,нг определяется конкретным спектром источника излучения и выбранным значением Е  [c.55]

    Известно, что при прохождении через вещество лучей от источника излучения. это вещество поглощает лучи только определенной длины волны (частоты), и по закону Кирхгофа само вещество излучает только те лучи, которые оно в данных условиях поглощает. В результате этого калчдая молекула, каждый атом или ион дают характерные частоты в спектре поглощения, спектре испускания или спектре комбинационного рассеяния. Спектр — это распределение энергии излучения, испускаемого (поглощаемого) телом по частотам или длинам волн. Задача качественного спектрального анализа заключается в обнаружении этих харак-тсрнстичоских частот и сравнении их с частотами индивидуальных веществ. Для количественного анализа требуется еще оценка интенсивности излучения. [c.90]

    Известно, что при прохождении электромагнитн-ого колеба.чик от источника излучения через вещество последнее поглощает лучи только определенной длины волны. В спектре поглощения этого [c.31]

    Этот факт можно объяснить селективностью коэффициента поглощения. Можно говорить о местных коэффициентах для данной длины волны А. Так 1сак распределение энергии в спектре зависит от температуры источника излучения, то и средний коэффициент поглощения должен также зависеть от этой температуры. [c.300]

    Вопрос о связи физико-химических свойств веществ и цветовых характеристик, определенных по спектрам отражения или поглощения (цветовые координаты, светлота, тон), актуален как с фундаментальной научной, так и с прикладной точки зрения. Цель работы - исследование корреляционной связи межд]/ совокупностью свойств нефтехимических систем и их цветовыми характеристиками Изу ены 17 легких и высокомолекулярных систем (углеводородные топлива, крекинг -остатки и т.д.). Цветовые характеристики указанных веществ определялись п разбавленных оптически прозрачных толуольных растворах по спектрам поглощения в видимом диапазоне.Запись спектра проводилась в диапазоне 380 -.760 нм. Координаты цвета X, У, 2), координаты цветности (х, у, г), цветовой тон (Л), насыщенност) (1 ) и светлоту ( ) определяли по стандартной методике МКО [2] при трех источниках излучения А, В и С [c.76]

    При измерении спектров поглощения в ультрафиолетовой области в качестве источника света используется водородная (дейтеривая) лампа (200—350 нм), а кюветы для раствора вещества, призма и вся оптика в приборе должны быть изготовлены из кварца (обычное стекло непрозрачно для коротковолнового излучения). При работе в видимой области используют тот же прибор, но в качестве источника излучения применяют лампу накаливания (от 350 нм и далее), а кюветы могут быть изготовлены из обычного стекла. В качестве растворителей в УФ спектроскопии применяют вещества, не имеющие поглощения в исследуемой области спектра и не вступающие в химическое взаимодействие с растворенным веществом (см. табл. 1). Для измерения электронных спектров поглощения обычно используют сильно разбавленные растворы (10 —10" моль/л). [c.129]

    СКР имеет преимущество перед ИК спектрами поглощения, которое заключается в простоте устройства приборов. В данных приборах используются стеклянная оптика, более дешевые приемники и источники излучения. В качестве приемника излучения широко применяются фотоэлементы я фотоумножители. В качестве источника монохроматического излучения применяются оптические квантовые генераторы, дающие монохроматическое излучение высокой янтенсивиости, что значительно облегчает исследования СКР газообразных и твердых кристаллических соединений. При исследовании СКР растворов в качестве растворителя можно применять воду. Это открывает широкие возможности исследования структуры неорганических, координационных соединений, ионов в растворах. [c.29]

    В виде )елеевского рассеяния проявляется только 10 интенсивности падающего света и только около 10 в виде комбинационного рассеяния. Поэтому эксперименты по рассеянию света требуют очень интенсивных источников излучения. Ранее в качестве источника излучения использовали наиболее интенсивные линии ртутного спектра. В настоящее время для этой цели используют лазеры. Осложняющими факторами могут быть разложение образна ири поглощении м0Н0хр0матическ010 света и появление флюоресценции. [c.274]

    Резонансное поглощение. Вследствие пространственного расширения возбужденной плазмы и существующего в ней градиента температур внутри плазмы может происходить обратное поглощение спектральных линий (закон инверсии испускания и поглощения Кирхгофа). Это явление самопогло-щения наблюдается преимущественно для резонансных линий и искажает связь между интенсивностью и числом частиц. Так как во внешних более холодных зонах плазмы допплеровское уширение меньше, чем в более горячей центральной зоне, то поглощаются преимущественно центры линий. В предельном случае интенсивность центра линий становится пренебрежимо малой по сравнению с интенсивностью обоих крыльев линии (самообраш -ние линий). Линии, отличающиеся склонностью к самопоглощению и само-обращению, в спектральных атласах приводят с индексом R (от reversal — обратный ход). Наблюдая резонансное поглощение в сложном спектре, можно найти, какие линии соответствуют переходам на основной уровень. Резонансное поглощение наблюдается также в случае прохождения резонансной линии от внешнего источника излучения через диссоциированный до атомов пар соответствующего простого вещества. Интенсивность первичного светового потока ослабляется при этом соответственно уравнению [c.186]

    Рассмотрим два случая измерения поглощения линии при использовании а) источника сплошного спектра или с широкой линией испускания б) узкополосного источника излучения, эмисси- [c.140]


Смотреть страницы где упоминается термин Поглощения спектры источники излучения для: [c.78]    [c.471]    [c.149]    [c.36]    [c.147]    [c.505]    [c.147]    [c.52]    [c.62]    [c.132]   
Каталитические, фотохимические и электролитические реакции (1960) -- [ c.224 ]




ПОИСК





Смотрите так же термины и статьи:

Источники излучения



© 2025 chem21.info Реклама на сайте