Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Оксид углерода и другие соединения углерода

    Каталитическая очистка газов основана на каталитических реакциях, в результате которых находящиеся в газе вредные примеси превращаются в другие соединения. Таким образом, в отличие от рассмотренных приемов каталитические методы заключаются не в извлечении токсичных примесей из газового потока, а в превращении их в соединения, присутствие которых допустимо в атмосфере, или в соединения, сравнительно легко удаляемые из газа. При этом требуются дополнительные стадии очистки— абсорбция жидкостями или твердыми адсорбентами. Для очистки газов применяется почти исключительно гетерогенный катализ на твердых катализаторах (см. ч. I, гл. VII). Наиболее распространен способ каталитического окисления токсичных органических примесей и оксида углерода при низких температурах, т. е. без подогрева очищаемого газа (кли воздуха). Каталитическая очистка от вредных оксидов и сернистых соединений производится также их гидрированием так, методом избирательного катализа гидрируют СО до СН4 и Н2О, оксиды азота — до N2 и Н2О и др. [c.237]


    При полном горении продуктами сгорания являются диоксид углерода, вода, азот, сернистый ангидрид, фосфорный ангидрид. При неполном горении обычно образуются токсичные, агрессивные, горючие и взрывоопасные продукты оксид углерода, спирты, кетоны, альдегиды кислоты и другие соединения. [c.121]

    Общая характеристика органических соединений. Соед нения углерода (за исключением некоторых наиболее простых) и Давна получили название органических соединений, Tt как в природе они встречаются почти исключительно в орган и мах животных и растений, принимают участие в жизненных пр( цессах или же являются продуктами жизнедеятельности или pai пада организмов. В отличие от органических соединений, таки вещества, как песок, глина, различные минералы, вода, оксид углерода, угольная кислота, ее соли и другие, встречающиес в неживой природе , получили название неорганически или минеральных веществ. [c.450]

    Мягкие кислоты связывают мягкие основания за счет ковалентных связей, жесткие кислоты связывают жесткие основания за счет ионной связи с образованием устойчивых соединений. Это обстоятельство используется в практических целях. В частности, она объясняет, почему алюминий встречается в природе в виде оксида, гидроксида и силикатов, кальций —в виде карбоната медь, ртуть — в виде сульфидов. Металлы переходных элементов VIH группы периодической системы, как мягкие кислоты, катализируют реакции, в которых принимают участие умеренно мягкие основания (оксид углерода). Другие более мягкие основания (соединения мышьяка и фосфора) служёт каталитическими ядами, так как они образуют более прочные соединения с этими металлами и блокируют их активные центры. Этим же объясняется ядовитость СО для человека. СО образует с Ре (II) гемоглобина крови более устойчивое соединение, чем кислород. Аналогичную роль играют ионы тяжелых металлов (РЬ +, Hg + и др.), которые, взаимодействуя с SH-группами физиологически важных соединений, выключают их функцию. [c.287]

    Сырье — гудрон — с низа вакуумной колонны подается в теплообменники 1 и далее поступает в верхнюю часть окислительной колонны 4 (на 1 м ниже уровня продукта). В низ окислительной колонны компрессором 3 через воздушный ресивер 2 подается сжатый воздух (через маточник). Гудрон движется вниз, а воздух наверх, и при их тесном контакте протекает процесс окисления сырья. В результате окисления масла переходят в смолы, смолы — в асфальтены. Кислород воздуха, взаимодействуя с водородом, содержащимся в сырье, образует водяные пары. Возрастающая потеря водорода сопровождается полимеризацией сырья и его сгущением. Основное количество кислорода уносится с уходящими газами в виде паров воды и в меньшем количестве — в виде диоксида и оксида углерода или других соединений. [c.106]


    В зависимости от поставленной задачи, свойств анализируемого вещества и других условий состав веществ выражается по-разному. Химический состав вешества может быть охарактеризован массовой долей элементов или их оксидов или других соединений, а также содержанием реально присутствующих в пробе индивидуальных химических соединений или фаз, содержанием изотопов и т. д. Состав сплавов обычно выражают массовой долей (%) составляющих элементов состав горных пород, руд, минералов и т. д. — содержанием элементов в пересчете на ка-кие-либо их соединения, чаще всего оксиды. Наиболее сложен так называемый фазовый или вещественный анализ, целью которого является определение содержания в пробе индивидуальных химических соединений, форм, в виде которых присутствует тот или иной элемент в анализируемом образце. При анализе органических соединений наряду с определением отдельных элементов (углерода, водорода, азота и т. д.) нередко выполняется молекулярный и функциональный анализ (устанавливаются индивидуальные химические соединения, функциональные группировки и т. д.). [c.5]

    Дж. Дальтон, 1808 г.). Так, углерод образует с кислородом два соединения. Одно из них — оксид углерода — содержит 42,88% (масс.) углерода и 57,12% (масс.) кислорода. Второе соединение — диоксид углерода — содержит 27,29% (масс.) углерода и 72,71% (масс.) кислорода. Подсчитаем массу кислорода, соединяющуюся с одним и тем же количеством углерода при образовании оксидов. Для этого разделим друг на друга величины, выражающие содержание кислорода и углерода в том и другом оксидах. Получим, что на одну единицу массы углерода в диоксиде углерода приходится ровно в 2 раза больше кислорода, чем в оксиде углерода (П). [c.20]

    Углерод взаимодействует с серой. При пропускании ее паров над раскаленным древесным углем образуется двусернистый углерод S2 (сероуглерод). Низшие сульфиды углерода неустойчивы. Сероуглерод представляет бесцветную жидкость удушливого запаха. Температура кипения S2 46,2 °С, затвердевания —110,6 °С. Давление пара S2 при 293 К равно 0,0385 МПа. Сероуглерод — эндотермическое соединение, при его распаде освобождается около 64,5 кДж/моль. S2 взрывоопасно, одиако взрывная реакция широко не распространяется. Из других соединений углерода с серой следует отметить OS, представляющее собой бесцветный газ, не имеющий запаха OS легко воспламеняется. Образуется OS при совместном пропускании смесн паров серы и оксида углерода через раскаленную трубку. OS сжижается при —49,9°С, а затвердевает прн —137,8 °С. [c.202]

    Как показывают данные табл. 1, наименьшая масса углерода, содержащаяся в молекулах рассмотренных соединений, равна 12 а. е. м. Отсюда ясно, что атомная масса углерода не может быть больще 12 а. е. м. (например, 24 или 36 а. е. м.). В противном случае пришлось бы принять, что в состав молекул диоксида и оксида углерода входит дробная часть атома углерода. Нет также оснований считать, что атомная масса углерода меньше 12 а. е. м., так как неизвестны молекулы, содержащие меньше, чем 12 а. е. м. углерода. Именно такая масса углерода, не дробясь, переходит при химических реакциях из одной молекулы в другую. Все другие массы углерода являются целыми числами, кратными 12 следовательно, 12 а. е. м. и есть атомная масса углерода. [c.34]

    Это равенство показывает, что концентрация диоксида углерода, соответствующая равновесию, должна быть в этом процессе для каждой данной температуры постоянной и не зависящей от количеств карбоната и оксида кальция, содержащихся в системе. Давление диоксида углерода, соответствующее этой концентрации при данной температуре, является тоже постоянным. Оно называется давлением нли упругостью диссоциации. Аналогичное выражение константы равновесия получается для всех гетерогенных реакций, в которых только одно из составляющих систему веществ находится Б газовом состоянии. К таким реакциям относятся процессы термической диссоциации оксидов, гидроксидов, сульфидов, карбонатов, гидрокарбонатов, солей аммония н других соединений. [c.102]

    При получении листовых резин, предназначенных для защиты от коррозии, по-видимому, наиболее эффективными вулканизующими агентами являются соли и оксиды свинца, в частности сублимированный оксид свинца (глет), действие которого активируется органическими кислотами или их производными, например канифолью. Токсичные оксид и другие соединения свинца можно полностью или частично заменить оксидом магния, но это неблагоприятно сказывается на водо-и кислотостойкости. Опубликованы данные, относящиеся к отечественному ХСПЭ, вулканизованному оксидом магния [81]. Вулканизации подвергалась смесь следующего состава, в масс, ч. ХСПЭ марки А 100,0, оксида магния 20,0, канифоли 2,5, каптакса 2,0, дифенилгуанидина 0,5. Ненаполненные вулканизаты имели прочность при разрыве 21,5 МПа, относительное удлинение 500%, остаточное удлинение 18%, эластичность по отскоку при 20 °С 21%, твердость по Шору А 70, истираемость 45 пм /Дж. После введения в смесь 30 масс. ч. технического углерода ПМ-100 повысилась твердость, улучшилось сопротивление истиранию, однако понизилось относительное удлинение и сопротивляемость многократным деформациям при растяжении и, что особенно важно, температура хрупкости упала с —56 до—21 С. [c.68]


    Многие элементы, соединяясь друг с другом, могут образовать разные вещества, каждое из которых характеризуется определенным соотношением между массами этих элементов. Так, углерод образует с кислородом два соединения. Одно из них — оксид углерода (II) или окись углерода — содерл<ит 42,88% (масс.) углерода и 57,12% (масс.) кислорода. Второе соединение — диоксид или двуокись углерода — содержит 27,29% (масс.) углерода и 72,71% (масс.) кислорода. Изучая подобные соединения, Дальтон в 1803 г. установил закон кратных отношений  [c.23]

    В противоположность этому реакции окислительного присоединения к комплексам переходных металлов возможны для большого числа соединений с ковалентными связями, образующих о-связь с металлом. Реакционная опособность этих соединений зависит от природы металла. Кроме того, многие соединения принимают участие в реакциях внедрения с образованием а-связей с переходным металлом. К реакциям внедрения способны олефины, сопряженные диены, ацетилены, оксид углерода, карбонильные соединения и другие ненасыщенные молекулы. Таким образом, многие органические реакции, по-видимому, осуществляются путем комбинации этих [c.15]

    Очень часто эти элементы входили в состав оксидов, т. е. соединений кислорода. Чтобы выделить элемент, соединенный с кислородом, последний необходимо было удалить. В принципе под воздействием какого-либо другого элемента, обладающего более сильным сродством к кислороду, атом (или атомы) кислорода может покинуть первый элемент и присоединиться ко второму. Этот метод оказался эффективным. Причем часто роль второго, отнимающего кислород элемента выполнял углерод. Например, если железную руду, которая по сути является оксидом железа, нагревать на коксе (относительно чистая разновидность углерода), то углерод соединяется с кислородом при этом образуются оксиды углерода и металлическое железо. [c.65]

    Многие элементы образуют по нескольку соединений друг с другом. Из этого следует, что эквивалент элемента и его эквивалентная масса могут иметь различные значения, смотря по тому, из состава какого соединения они были вычислены. Но оо веек таких случаях различные эквиваленты (или эквивалентные массы) одного и того же элемента относятся друг к другу, как небольшие целые числа. Например, эквивалентные массы углерода, вычисленные исходя из состава диоксида и оксида углерода, равны соответственно 3 г/моль и 6 г/моль отношение этих величин раине I 2. [c.32]

    Соединения углерода с металлами и другими элементами, которые по отношению к углероду являются электроположительными, называются карбидами. Их получают прокаливанием металлов или их оксидов с углем. [c.437]

    Органическая химия Соединения углерода (за исключением оксидов углерода, угольной кислоты и ее солей, карбидов и некоторых других простых соединений углерода) [c.11]

    Амины получаются также аминолизом алкилхлоридов. При взаимодействии алкилхлоридов с сульфатами образуются водорастворимые сульфонаты. На основе алкилхлорида получают соединения Гриньяра, из которых при взаимодействии с оксидом углерода (IV) образуются карбоновые кислоты. При взаимодействии с безводным карбонатом натрия алкилхлориды превращаются в сложные эфиры, с сульфгидратами щелочей—в тиоспирты. В реакции Фриделя— Крафтса алкилхлориды взаимодействуют с аренами. Они дехлорируются с образованием алкенов. Алкилхлориды используют для введения в молекулы высокомолекулярных алкильных групп при производстве инсектицидов и ядохимикатов, для повышения растворимости полученных соединений в смеси углеводородов (нефтепродуктов), а также во многих других производствах. Термическим хлорированием технического пентана получают амилхлориды, которые гидролизуют затем щелочью в амиловые спирты, используемые непосредственно или в виде их амилацетатов в качестве растворителей и важного вспомогательного материала в лакокрасочной промышленности [18]. [c.325]

    Нетрудно убедиться, что закон кратных отношений представляет собой дальнейшее развитие закона эквивалентов, основанное на последовательном анализе рядов химических соединений, образующихся при взаимодействии друг с другом двух любых химических элементов. В простейшем случае указанный ряд может состоять из двух соединений. Например, при взаимодействии углерода и кислорода образуются два соединения оксид углерода (II) и оксид углерода (IV). [c.15]

    К сожалению, часто в качестве универсального средства очистки выбросов рассматривается термообезвреживание, каковым оно на самом деле не является. В термоокислительных процессах необратимо теряется качество воздуха, использованного для горения, а продукты окисления, выбрасываемые в атмосферу, содержат некоторое количество новых токсичных вешеств - оксида углерода (II) СО и оксидов азота N0 . Вообще область применения термообезвреживания ограничена только соединениями, в молекулах которых нет других элементов, кроме углерода С, водорода Н и кислорода О. Получить нетоксичные продукты реакции любых других соединений с кислородом принципиально невозможно. Термоокислительная обработка выбросов, загрязненных углеводородами или КПУ (кислородными производными углеводородов), ограничивается также по затратам топлива на создание требуемых температур в зоне реакции (400...550 С для термокаталитической обработки и [c.132]

    Применение щелочных металлов в качестве отрицательных электродов источников тока всегда представлялось заманчивым из-за высокого отрицательного потенциала и больших токов обмена. Однако в водных растворах использование щелочных металлов связано с чрезвычайно большими трудностями. В современных вариантах источников тока со щелочными металлами применяют расплавы солей, органические растворители (апротонные растворители) или твердые электролиты. Наиболее перспективны две последние группы источников тока. В химических источниках тока с апротонными растворителями в качестве анода используют литий, что позволяет достигать значительных ЭДС (до 3—4 В) и высоких значений удельной энергии. В качестве материала катода применяют галогениды, сульфиды, оксиды и другие соединения. Особый интерес представляют катоды ща основе фторированного углерода. Это вещество нестехиометрического состава с общей формулой ( F r)n получают при взаимодействии углерода с фтором при 400—450 °С. При работе такого катода образуются углерод и ион фтора. Разработаны литиевые источники тока с жидкими окислителями (системы SO b — Li и SO2 — Li). Предпринимаются попытки создания аккумуляторов с использованием литиевого электрода в электролитах на основе апротонных растворителей. Литиевые источники тока предназначаются в основном для питания радиоэлектронной аппаратуры, кардиостимуляторов, электрических часов и т. д. [c.266]

    Электрохимическая коррозия возникает при действии на контактирующие разнородные металлы электролитов, т. е. жидкостей, проводящих электрический ток, например растворов, солей, кислот и щелочей. Электрохимическая коррозия протекает не только при погружении в электролит металла, но и при хранении его в атмосферных условиях. На поверхности металлических изделий часто имеется тонкая и незаметная вооруженным глазом пленка воды (влаги). В пленке воды растворяются газы (хлористый водород, оксиды серы, азота и др.), находящиеся в атмосфере. Газы образуют с влагой на поверхности изделий соответствующие кислоты (серную или сернистую, соляную, азотную или азотистую и др.). Таким образом создаются условия для возникновения электрохимической коррозии. Коррозионная активность атмосферы зависит от степени загрязнения ее различными веществами. Так, в сельской местности алюминий коррозиирует в 100 раз медленнее, чем в промышленных районах, где загрязненность атмосферы пылью, особенно оксидом углерода, соединениями серы, оксидом азота, частицами угля, золы и другими веществами, значительно выше. Эти вещества образуют с влагой воздуха агрессивные среды, в которых металлические изделия из стали, изделия из дерева, кожи, ткани и других материалов разрушаются быстрее. Значительное влияние на коррозионную активность атмосферы оказывает также температура с повышением ее коррозия металлов усиливается. [c.6]

    В качестве катализаторов химических процессов часто используют мелко раздробленные -металлы (платнну, палладий, никель и др.). Атомы этлх металлов — мягкие кислоты, поэтому они катализируют реакции, в которых принимают участие умеренно мягкие основания, например оксид углерода. Другие более мягкие основания — соединения мышьяка и фосфора — являются каталитическими ядами, поскольку они образуют бол(ве прочные соединения с этими элементами и блокируют активные центры на металлах-катализаторах. [c.246]

    Оксиды углерода, соли угольной кислоты, карбиды изучаются в курсах неорганической химии. Нередко там же рассматриваются как неорганические соединения СОСЬ, 0(NH2)2, НО— =N и NH= =0, OS, S2 и ряд других элементоуглеродистых соединений. Однако все производные угольной кислоты, содержащие углеводородные остатки, должны быть рассмотрены в курсе органической химии в связи со всеми другими ее соединениями. [c.622]

    Многие металлы образуют карбиды М,гС , получающиеся либо прямым синтезом из элементов, либо при нагревании металла в парах соответствующего углеводорода, либо при нагреваинн оксида или другого соединения металла с углеродом. Химические и физические свойства карбидов позволяют разделить их па четыре класса  [c.46]

    При нагревании смеси гексана и кисло рода (42% гексана, 57% кислорода и 1 % азота) в закрыто сосуде всегда имеется период индукции, во время которого давление возрастает очень медленно, после чего следует быстрое возрастание давления Этот период повышения давления может быть связан с реакцией окисления, вызываемой молекулами перекиси, образовавшимися во время периода индукции. Здесь происходят реакции, состоящие в образовании воды, ненасыщенных соединений, жирных кислот, окиси углерода, углекислоты и других газов. Ненасыщенные промежуточные продукты, образовавшиеся таким образом, поглощают кислород, образуя новые (вторичные) перекиси. Разложение и реакции первичных и вторичных перекисей состоят из ряда дальнейших измееений, ведущих к образованию альдегидов, надкислот и других продуктов. Вскоре после того, как образование перекисей достигло максимальной величины, весь свободный кислород исчезает. Поэтому дальнейшее образование перекисей, моль-оксидов, воды и жирных кислот не может происходить, хотя разложение присутствующих перекисей на окись углерода, углекислоту и другие газы и продолжается. Это разложение и вызьгоает значительное возрастание давления перед концом реакции. [c.922]

    Основные продукты фотохимических реакций — альдегиды, кетоны, оксиды углерода, органические нитраты и оксиданты (озон, диоксид азота, пероксиацетилиитрат и другие органические пероксидиые и гидропероксидные соединения, пероксид водорода). [c.34]

    ЧТО элементы входят в состав соединений лишь определенными порциями. Подсчитаем, например, массу кислорода, соединяющуюся с одним и тем же количеством углерода при образовании оксида углерода(И) и диоксида углерода. Для этого разделим друг на друга величины, выражающие содержание кислорода и углерода в том и в другом сксида.)с. Мы получим, что на одну едианцу массы углерода в диоксиде углерода приходится ровно в 2 раза больше кислорода, чем в оксиде углерода (И). [c.24]

    Законы постоянства состава и кратных отношений вытекают из атомно-мо-леиулприого учения. Вещества с молекулярной структурой состоят из одинако-вмх молекул. Поэтому естественно, что состав таких веществ постоянен. При образовании из двух элементов нескольких соединений атомы этих элементов соединяются друг с другом в молекулы различного, но определенного состава. Например, молекула оксида углерода(И) построена из одного атома углерода и одного атома кислорода, а в состав молекулы диоксида углерода входит один атсм углерода и два атома кислорода. Ясно, что масса кислорода, приходящаяся па одну и ту же массу углерода, во втором из этих соедипепнй в 2 раза больше, чем в первом. [c.24]

    Дальтон принял в качестве отправной точки таблицу соединительных весов элементов и задался вопросом, почему должно быть постоянным количественное отношение соединяюшихся элементов. Его ответ заключался в следующем всякое соединение состоит из большого числа одинаковых молекул, каждая из которых построена из одного и того же небольшого числа атомов, связанных между собой одинаковым образом. Но все же Дальтону еше необходимо было знать, какое именно число атомов углерода и кислорода соединено друг с другом в каждой молекуле оксида углерода и сколько атомов водорода и кислорода соединено друг с другом в молекуле воды. Лишенный возможности руководствоваться иными соображениями, он выдвинул правило простоты , которое вначале очень помогало ему, но затем привело к серьезному затруднению. Наиболее устойчивыми двухкомпонентными молекулами, рассуждал Дальтон, должны быть простейшие двухатомные молекулы типа АВ. Если известно только одно соединение двух элементов, оно должно иметь формулу АВ. Следующими по устойчивости должны быть трехатомные молекулы типа АВ и А В. Если известны только два или три соединения двух элементов, они должны принадлежать к этим трем типам. Это правило было одним из принципов экономии , подобным правилу минимизации энергии в механике или принципу наименьшего действия в физике, которые верно сформулированы не во всех случаях. Дальтон оказался здесь на неверном пути. [c.281]

    Амфотерные и основные оксиды представляют собой кристаллические вещества с очень высокими температурами плавления. Например, А12О3 используется в качестве абразива, известного под названием корунд, или наждак, а ЗЮз-это кварц. Только оксиды углерода, азота, серы и галогенов в нормальных условиях находятся в жидком или газообразном состоянии. Различие между С и 81 в диоксиде углерода и кварце аналогично различию между С и N в алмазе и газообразном азоте. Разница в свойствах С и 81 обусловлена тем, что С способен образовывать двойные связи с О и поэтому они образуют друг с другом молекулярное соединение с ограниченным числом атомов. Между тем 81 должен образовывать простые связи с четырьмя различными атомами О в результате возникает протяженная трехмерная структура, в которой тетраэдрически расположенные атомы 81 связаны мостиковыми атомами О. [c.322]

    Кровяные яды различны ио своему действию. Оксид углерода, реагируя с гемоглобином крови, образует карбоксигемог-лобин, а некоторые органические нитриты и нитраты — метге-мо лобин. Образовавшиеся соединения лишают гемоглобин его ро.,[и — переносчика кислорода из легких в ткани, вследствие чего развивается глубокая кислородная недостаточность, могущая привести к смертельному исходу. Некоторые кровяные яды нарушают процессы кроветворения, к их числу относятся гомологи бензола, свинец и его неорганические соединершя и другие яды. [c.41]

    А б с о р б iTiTTIk ндкостями — наиболее распространенный и до сих пор наиболее надежный способ газоочистки. Она используется в промышленности как основной прием извлечения из газов оксидов углерода, оксидов азота, хлора, диоксида серы, сероводорода и других сернистых соединений, паров кислот (НС1, H2SO4, HF), цианистых соединений, разнообразных токсических органических веществ (фенол, формальдегид, фталевый ангидрид и др.) и т. д. Метод абсорбционной очистки основан на избирательной растворимости вредных примесей в жидкости (физическая абсорбция) или избирательном извлечении их прн помощи реакций с активными компонентами поглотителя (хемосорбция). Абсорбцион- [c.229]

    Для химической переработки выделенных из газа углеводородов используются, практически, все основные реакции органического и нефтехимического синтеза пиролиз, конверсия, окисление, гидрирование и дегидрирование, гидратация, алкилирование, реакции введения функциональных групп — сульфирование, нитрование, хлорирование, карбонилирование и др. Наряду с процессами разделения они позволяют получать на основе газообразного топлива водород, оксид углерода (II), синтез-газ, азотоводородную смесь, ацетилен, алкадиены, цианистый водород, разнообразные кислородсодержащие соединения, хлор, нитропроизводные и многое другое. В свою очередь эти полупрЬдукты являются сырьем в производстве многочисленных целевых продуктов для различных отраслей народного хозяйства высококачественного топлива, пластических масс, эластомеров, химических волокон, растворителей, фармацевтических препаратов, стройматериалов и др., как это показано ниже. [c.198]

    Сероводород. Природный и нефтяной газы, каменноугольный газ, широко используемые в промышленности и для бытового отопления, в качестве примеси содержат сероводород. В зависимости от источника получения газы могут также содержать в меньших концентрациях сероуглерод (СЗг), сероокись углерода, или карбо-нилсульфид ( OS), тиофен ( 4H4S) и меркаптаны (RSH), пиридиновые основания, цианистый водород, оксид углерода (И) и аммиак. Сероводород содержится также в- отходящих газах, образующихся при выпарке целлюлозных шелоков и в результате процессов обжига. Технологические и топочные газы, содержащие сероводород, коррозионно-активны при охлаждении ниже точки росы, обладают неприятным запахом, весьма нежелательны при производстве и термической обработке сталей и создают ряд других проблем. Поэтому сероводород и некоторые другие соединения необходимо удалять из этих газов. Некоторые муниципальные власти ограничивают содержание сероводорода в бытовом газе до 0,0115 г/м , хотя часто допускается концентрация 0,35—0,70 г/м . Для металлургических процессов обычно разрешают еще более высокие концентрации — до 1,15 г/м [310]. [c.142]

    Представляют интерес данные о возможности катализа процессов замещения лигандов в комплексах платиновых металлов при экстракции их диалкилсульфидами и нефтяными сульфокси-дами [125—127]. Катализ наблюдался при добавлении в раствор веществ, способных генерировать свободные радикалы. Другой способ катализа заключался в обработке бромидного комплекса платины(И) оксидом углерода, ускорявшим процесс и увеличивавшим коэффициент распределения платины при ее экстракции дибу-тилсульфидом [127]. Экстракция сопровождалась быстрым замещением внутрисферного брома в образующемся карбонилбромиде на сульфид с образованием в органической фазе нейтрального соединения [Р1С0Вга дибутилсульфид]. [c.343]

    К неорганическим соединениям углерода относят его оксиды, соли угольной, синильной НСЫ и родановодородной ПСЫЗ кислот, карбиды и некоторые другие вещества. [c.133]

    Наиболее важна и многообразна группа химических процессов, связанных с изменением химического состава и свойств веществ. К ним относятся процессы горения — сжигание топлива, серы, пирита и других веществ пирогенные процессы — коксование углей, крекинг нефти, сухая перегонка дереза электрохимические процессы — электролиз растворов и расплавов солей, электроосаждение металлов электротермические процессы — получение карбида кальция, электровозгонка фосфора, плавка стали процессы восстановления — получение железа и других металлов из руд и химических соединений термическая диссоциация — получение извести и глинозема обжиг, спекание — высокотемпературный синтез силикатов, получение цемента и керамики синтез неорганических сссд. 1п.е-ний — получение кислот, щелочей, металлических сплавов и других неорганических веществ гидрирование — синтез аммиака, метанола, гидрогенизация жиров основной органический синтез веществ на основе оксида углерода (II), олефинов, ацетилена и других сфга-нических соединений полимеризация и поликонденсация — получение высокомолекулярных органических соединений и на их основе синтетических каучуков, резин, пластмасс и т. д. [c.178]

    Как и в случае всех топлив, загрязнения в выхлопе также могут образовываться в результате неполного сгорания, ведущего к возникновению оксида углерода, углеводородов, карбонизиро-ванных частиц и возможно других соединений типа ПХДД. Содержание этих примесей можно свести к минимуму путем достижения высокой эффективности сгорания посредством специальных мер. [c.67]

    Подобные свойства позволили разработать специальные сорта, например всесезонные маловязкие моторные масла SAE 5W, всесезонные трансмиссионные масла SAE 75W-90+140, высокоиндексные гидравлические масла, масла для фреоновых компрессоров с фреонол1 R12 и многое другое. Возможно использование ПАО как таковых и в смеси с нефтяными маслами. Применение моторных масел на углеводородной основе с композицией беззольных присадок позволяет несколько снизить уровень выброса экологоопасных соединений. Содержание в выхлопе оксида углерода составляет 3,2 и 4,0% мол. при использовании соответственно синтетических и нефтяных масел аналогичные значения для выброса углеводородов — 2560 и 3000 млн . В присутствии синтетического масла отмечен также низкий выброс твердых частиц. [c.198]

    Работа с открытой ртутью требует особой тщательности из-за опасности хронического отравления парами ртути. Во избежание растекания ртути приборы ставят в плоские поддоны (фотографические кюветы). Ртуть, попавщую на пол, необходимо собрать или, если это невозможно, обезвредить, превратив ее в амальгаму действием циика или олова можно посыпать ртуть иодидом углерода. Пыль и пары большинства других металлов (например, РЬ, Сс1, 2п, Ве), а также летуч1ие соединения тяжелых металлов (оксиды, карбонилы, мегаллоорганические соединения) также ядовиты. [c.511]


Смотреть страницы где упоминается термин Оксид углерода и другие соединения углерода: [c.274]    [c.50]    [c.141]    [c.212]    [c.175]    [c.309]   
Смотреть главы в:

Курс общей и неорганической химии -> Оксид углерода и другие соединения углерода




ПОИСК





Смотрите так же термины и статьи:

Углерода оксиды



© 2025 chem21.info Реклама на сайте