Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свечение

    Плюккер впаял в трубки два электрода, создал между ними электрический потенциал и получил электрический ток. Под действием тока в трубках возникало свечение ( эффект накаливания ), характер которого зависел от глубины вакуума. При достаточно глубоком вакууме свечение в трубке исчезало, и только вблизи анода было заметно зеленое свечение стекла трубки. [c.147]

    Немецкого физика Вильгельма Конрада Рентгена (1845—1923) заинтересовало, почему катодные лучи заставляют некоторые вещества светиться. Чтобы наблюдать это довольно слабое свечение, [c.151]


    Физики сразу же заинтересовались этим открытием. Среди тех, кто первым начал изучать рентгеновские лучи, был и французский физик Антуан Анри Беккерель (1852—1908). Он занимался флуоресценцией — свечением, наблюдаемым у ряда веществ после облучения их солнечным светом. Его интересовало, не содержит ли флуоресцентное свечение рентгеновские лучи. [c.152]

    Примером может служить а. с. 277805 для обнаружения неплотностей в холодильных агрегатах во фреон добавляют люминофор и определяют места утечек по свечению люминофора в ультрафиолетовом свете. Кстати, так решается и задача 7.6. В пленку при изготовлении добавляют люминофор поиск прилипших кусочков ведут визуально — при дневном свете или облучении ультрафиолетом (пат. США 3422347). [c.119]

    Лучеиспускание пламени. Лучеиспускание светящегося пламени углеводородов и угольной пыли значительно больше, чем лучеиспускание двуокиси углерода и водяного пара. Свечение пламени объясняется наличием в нем углеводородов, раскаленных частиц сажи, угля, для полного сгорания которых не хватает кислорода. [c.152]

    При температурах вблизи 300—400° алифатические углеводороды от этана и выше характеризуются довольно сложным режимом воспламенения (рис. XIV.10). При более низких температурах имеется период индукции, который может продолжаться в течение нескольких минут, хотя обычно он составляет примерно 1—2 мин. Окисление может сопровождаться слабым свечением по всему реакционному сосуду, которое наблюдается почти до конца [c.411]

    Взрывы происходили и при откачивании перекисей под вакуумом, при отгонке растворителя из раствора перекиси ацетила в диэтиловом эфире, при перегонках гидроперекиси трег-бутила под уменьшенным давлением. В последнем случае взрыву предшествовало быстрое разложение со свечением. Описаны взрывы, происшедшие при откачивании под вакуумом нагретого до 115°С трег-бутилпербензоата, а также перекиси бензоила, приготовленной из смеси хлороформа и метанола, под действием вспышки света от сжигания вещества на газовой горелке, расположенной на расстоянии 1 м. [c.139]

    Другая характерная особенность газофазного окисления углеводородов в области сравнительно невысоких давлений (0,03—0,25 МПа) и температур (200—400 °С) связана с появлением так называемых холодных пламен. Они проявляются в виде характерного бледно-голубого свечения, возникновение которого обычно связывают с взрывным разложением пероксидов, накапливающихся в окисляемом углеводороде, и с образованием большого количества возбужденных молекул формальдегида (НСНО ) [21]. Прн этом вероятными реакциями образования НСНО считаются следующие  [c.32]


    Температура, при которой появляются холодные пламена, несколько понижается с ростом молекулярной массы углеводорода и возрастает при переходе от парафиновых углеводородов к олефинам и нафтенам. При окислении ароматических углеводородов образования холодных пламен не наблюдалось. Не наблюдалось их и при окислении метанола и формальдегида. Исследование спектра свечения холодных пламен привело к выводу, что излучение обусловлено флуоресценцией формальдегида [c.32]

    В низкотемпературной и переходной зонах (200—600°С) наблюдается так называемое многостадийное самовоспламенение. Последнее характеризуется тем, что в течение периода задержки самовоспламенения до момента появления горячего пламени в реагирующей смеси наблюдается возникновение и угасание пламен в виде слабого сине-фиолетового свечения (холодные пламена) и голубого пламени более интенсивного свечения. Появление холодного пламени сопровождается сравнительно небольшим разогревом смеси (примерно до 200 °С) и повышением давления. После одной или нескольких таких вспышек возникает горячее пламя, происходит взрывное сгорание смеси. [c.132]

    При экспериментальном исследовании механизма самовоспламенения и образования начальных очагов пламени в топливовоздушной смеси в бомбах и одноцилиндровых установках, воспроизводящих условия рабочего процесса дизеля, перед появлением горячего пламени было обнаружено слабое свечение, сопровождающееся небольшим увеличением давления [161]. Было также установлено [158], что в период, предшествующий холодному свечению, происходит накопление органических пероксидов и альдегидов. [c.148]

    Более углубленное представление о механизме антидетонационного действия ТЭС, основанное на теории многостадийного развития детонации, дано в работах А. С. Соколика [165, 180]. Он подчеркнул важную роль свободных радикалов, образующихся при распаде металлоорганического антидетонатора, и установил принципиальное различие в действии ТЭС на задержку появления первичного холодного пламени и на задержку в развитии вторичных холоднопламенных процессов, ведущих к горячему взрыву. Экспериментально было показано, что введение ТЭС в топливо-воздушную смесь резко ослабляет интенсивность первичного холодного пламени (что фиксируется по свечению и приросту давления), замедляет появление вторичного пламени и, наконец, затрудняет возникновение горячего взрыва, делая его возможным лишь при более высоких давлениях. [c.171]

    После индукционного периода, продолжающегося несколько минут, возникает слабое свечение, которое сохраняется до полного завершения реакции. [c.250]

    Возникает слабое свечение с последующим образованием бледно-голубого холодного пламени, которое начинается вблизи центра сосуда и распространяется к сгенкам одновременно обнаруживаются незначительные колебания давления свечение сохраняется в течение нескольких секунд после исчезновения пламени. [c.250]

    Интенсивность холодных пламен возрастает с уменьшением числа их, и во всех случа.чх после исчезновения холодного пламени в течение нескольких секунд наблюдается интенсивное равномерное свечение. [c.250]

    Многочисленные опубликованные в литературе сообщения указывают на то, что подобные явления характерны и для других соединений, содержащих алифатические цепи углерода. Вдоль изобарной линии температуры возникновение заметного свечения, появление и исчезновение холодных пламен и воспламенение зависят от различных условий. Температуры незначительно меняются при изменении отношения топлива к воздуху, если топливо берется в избытке они заметно снижаются для высших м-пара--финов повышаются при замене парафина соответствующим олефином или нафтеном или при замене ненасыщенного циклического соединения типа циклогексена насыщенным типа циклогексана. При этом ароматические соединения намного устойчивее к окислению, чем парафиновые или нафтеновые соединения. Способность углеводородов к окислению тесно связана с детонационной характеристикой топлив, установленной нри моторных испытаниях. Поведение спиртов, альдегидов и эфиров подобно поведению парафинов, но отличается температурными порогами особенно низкие температуры характерны для этилового эфира. [c.251]

    Сейчас уместно напомнить что, как точно установлено, свечение в области холодных пламен обусловливается возбужденными молекулами формальдегида [11, 14], причем число возникающих световых квантов составляет необычайно малую долю от общего числа реагирующих углеводородных молекул [9, 48]. Для формальдегида энергия возбуждения составляет около 77 ккал. Эта величина учитывает образование возбужденного альдегида в нормальных реакционных цепях. Однако в частном случае реакция [c.256]

    Часть углерода накаляется до свечения. [c.464]

    СЯ темный, или таунсендовский, разряд, характеризующийся очень малыми силами тока и почти полным отсутствием свечения газа. Слабое свечение все-таки наблюдается, так как электроны, приобретая способность ионизировать молекулы, могут, естественно, и возбуждать их. [c.239]

    При некоторых реакциях наблюдается выделение или поглощение лучистой энергии. Обычно в тех случаях, когда при реакции выделяется свет, внутренняя энергия превращается в излучение не непосредственно, а через теплоту. Например, появление света при горении угля является следствием того, что за счет выделяющейся при реакции теплоты уголь раскаляется и начинает светиться. Но известны процессы, в ходе которых внутренняя энергия превращается в лучистую непосредственно. Эти процессы носят название холодного свечения или люминесценции. Большое значение имеют процессы взаимного превращения внутренней и электрической энергии (см. 98). При реакциях, протекающих со взрывом, внутренняя энергия превращается в механическую — частью непосредственно, частью переходя сперва в теплоту. [c.166]


    Неон. Аргон. Эти газы, а также криптон и ксенон, получают из воздуха путем его разделения при глубоком охлаждении. Аргон, а связи с его сравнительно высоким содержанием в воздухе, получают в значительных количествах, остальные газы — в меньших. Неон и аргон нмеют широкое применение. Как тот, так и другой применяются для заполнения ламп накаливания. Кроме того, ими заполняют газосветные трубки для неона характерно красное свечение, для аргона сине-голубое. Аргон, как наиболее доступный из благородных газов, применяется так ке в металлургических и химических процессах, требующих инертной среды, в частности при аргонно-дуговой сварке алюминиевых и алюминиевомагниевых сплавов. [c.670]

    Сначала считалось, что инертные газы могут представлять интерес только как объект научного исследования и никакого практического применения они не найдут. Однако в своих исследованиях, начатых им в 1910 г., французский химик Жорж Клод (1870—1960) показал, что электрический ток, пропускаемый через некоторые газы, подобныь неону, вызывает мягкое окрашенное свечение. [c.107]

    Приблизительно в 1875 г. английский физик Уильям Крукс (1832—1919) сконструировал трубки, в которых можно было получить более глубокий вакуум (трубки Крукса). Исследовать электрический ток, проходящий через вакуум, стало удобнее. Казалось совершенно очевидным, что электрический ток возникает на катоде и движется к аноду, где он ударяется в окружающее анод стекло и создает свечение. Чтобы доказать справедливость такого понимания явления, Крукс помещал в трубку кусок металла, прн этом на стекле на противоположном от катода конце появлялась тень. Однако в то время физики не знали, что представляет собой электрический ток. Они не могли вполне определенно сказать, что же все-таки движется от катода к аподу, правда им доподлинно было известно, что этот поток движется прямолинейно (поскольку тень от металла была четко очерчена). Не придя ни к какому выводу относительно природы этого явления, физики отнесли его к излучению , и в 1876 г. немецкий физик Эуген Гольдштейн (1850—1930) назвал этот поток катодными лучами. [c.147]

    Неон применяется в электровакуумной технике для наполнения стабилизаторов напряжения, фотоэлементов и других приборов. Различные типы неоновых ламп с характерным красным свечением упот- [c.495]

    Выполненные в последние годы исследования холоднопламенного свечения, использующие высокочувствительные приборы, показали, что хемилюминесценция в реакциях окисления углеводородов обусловлена реакциями рекомбинации различных свободных радикалов, в том числе пероксидных, образующихся при распаде молекулы инициатора — гидропероксида, азоизобу-тиронитрила, дициклогексилпероксидикарбоната и др. [23]. Очевидно, хемилюминесценция является общим свойством свободных радикалов (соединений, имеющих запас нескомпенсиро-ванной химической энергии), проявляющимся при их рекомбинаций В результате рекомбинации образуется молекула М, находящаяся в возбужденном состоянии  [c.33]

    Результаты экспериментального исследования самовоспламенения н-гексано-воздушной смеси [21] свидетельствует о том, что в начальной стадии окисления при 320—430 °С наблюдается образование пероксидных соединений. Далее отмечается заметное возрастание температуры и давления, сопровождающееся появлением холоднопламенного свечения, максимум интенсивности которого совпадает с максимумом концентрации НСНО в газе. В спектре излучения голубого пламени помимо излучения, обусловленного возбужденными молекулами формальдегида, [c.133]

    Ранее была показана взаимосвязь между интенсивностью излучения пламени и скоростью ее распространения. "Аналогичная взаимосвязь существует и в случае детонационного распространения пламени [21]. Так, было установлено, что фотографически регистрируемая длительность свечения за фронтом детонационной волны для смесей СН4+О2, СН4 + 2О2, 2N2 + O2, 2N2 + + O2 + N2 и 2N2 + 2O2 изменяется антибатно скорости детонации. По-видимому, детонационное распространение пламени также можно представить в виде АХП, при котором горение происходит вследствие самовоспламенения смеси в детонационной волне, а роль обратной связи играет излучение пламени. [c.143]

    После начального свечения, наблюдаемого сразу послс наполнения сосуда, возникают с интервалами в несколько секунд четг>1ре или пять отдельных холодных пламен. Каждое такое пламя, прежде чем погаснуть, проходит через все реакционное пространство. [c.250]

    С Интенсивпое свечение появляется сразу после наполнения [c.251]

    Следует также отметить, что продолжительность индукционного периода в области Г1 несколько зависит от природы поверхности сосуда. Все экспериментаторы указывают на то, что для получения воспроизводимых данных необходима обработка (тренировка) реакционного сосуда. Она обычно заключается в проведении перед измерением многих холостых опытов. Тренировка требовалась как в опытах со стеклянными сосудами при низких давлениях, так и в опытах Рэгенера при высоких давлениях. Фотоснимки Тейлора и сотрудников [46], сделанные через стеклянное окно в камере быстрого сжатия (р условиях, аналогичных условиям Рэгенера) показывают, что светящиеся места возникают преимущественно на поверхности камеры и что воспламенение развивается по направлению к центру сосуда. В отношении роли поверхностей следует напомнить наблюдения Битти и Эдгара [4], пропускавших смесь -гептана с воздухом через пирексовую трубку диаметром 2,4 см при различных температурах. Несмотря на то, что начальное рассеянное свечение, появлявшееся примерно при 250° С, наблюдалось по всему сосуду, холодные пламена. [c.258]

    Как указывалось выше, свечение возникающего пламени значительно усиливается в период детонации. Уитроу и Рассвей-леру удалось показать спектрографическими методами [118, 124], что полосы спектра связей С—С и С—Н при детонации имеют значительно меньшую интенсивность и что у спектра несгоревших газов в детонационной зоне непосредственно перед взрывом большее поглощение, чем у спектра тех же самых газов в тот же момент, но при бездетонационном горении. Кроме того, поглощение при детонации усиливается, если топливо-воздушная смесь нагрета это наводит на мысль, что вещества большой поглощающей силы образуются в нагретом сырье, когда оно сжимается поршнем и когда к нему приближается фронт пламени. Добавка к бензину антидетонатора в количествах, достаточных для подавления взрыва, ослабляет полосы поглощения несгоревших газов и восстанавливает интенсивность линий С—С и С—Н в сгорающих газах. Очевидно, что перед автовоспламенением, которое вызывает детонацию, появляются соединения (неидентифициро-ванные) с высокой поглощающей способностью. [c.411]

    Некоторые детали горения различаются в разных типах пламени. Обычно рассматривают два вида пламени желтое и голубое. Иногда выделяют зеленое пламя. В случаях и голубого и зеленого пламени цвет приписывают излучению некоторых радикалов, существующих в реакционной зоне. Светящееся желтое пламя объясняется свечением раскаленных угольных частиц, получающихся в результате процессов крекинга больших молекул в меньшие фрагменты. Различия между обоими видами пламени были обрисованы Хасламом и Расселом (Haslam and Russell [73]) и более полно Ромпом [74]. Желтое пламя дает непрерывный спектр, а голубое — полосатый. Один тип может быть превращен в другой изменением условий горения. Каждое топливо при неизменных условиях дает только один тип пламени. [c.475]

    В качестве примера рассмотрим р ёакцйю взаимодействия атомного натрия с молекулами иода. В реакционной трубке по ее длине имеются две зоны 1) зона образования наибольшего количества продукта реакции — NaJ (расположенная ближе к входу потока молекулярного иода) и 2) зона наиболее интенсивного свечения за счет энергии процесса [c.137]

    При дальнейшем повышении градиента иотенциала (см. рис. X, 1) сила тока возрастает сначала относительно медленно, а нри определенном значении градиента потенциала, равном В, резко увеличивается скачком до очень высоких значений, определяемых в основном внешним соиротпвлением цепи и мощностью источника тока. Одновременно появляется яркое свечение газа. Это явление, происходящее, напрпмер, в воздухе при атмосферном давлении н зиачеиии градиента потенциала порядка 3- КИ в см, называется зажиганием газового разряда, или пробоем газового промежутка. [c.239]

    Согласно модели, предложенной в 1903 г. Дж. Дж. Томсоном, атом состоит из положительного заряда, равномерно распределенного по всему объему атома, и электронов, колеблющихся внутри этого заряда. Для проверки гипотезы Томсона и более точного определения внутреннего строения атома Э, Резерфорд провел серию опытов по рассеянню а-частиц тонкими металлическими пластинками. Схема такого опыта изображена на рие. 2. Источник а-излучения И помещали в свинцовый кубик К е просверлениым в нем каналом, так что удавалось получить поток а-частиц, летящих в определенном направлении. Попадая на экран Э, покрытый сульфидом цинка, а-чаетицы вызывали его свечение, причем в лупу Л можно было увидеть и подсчитать отдельные вепышки. [c.59]

    Сульфид цинка, а также оксид цпнка входят в группу веществ, обладающих способностью л ю м и н е с ц и р о в а т ь — испускать холод[ ое свечение в результате действия на них лучистой энергии или электронов. Яление люминесценции широко используется в науке и технике. Так, большое значение приобрел люминесцентный анализ, люминесцентные лампы применяются для осБ ЗЩения, люминесцентные экраны — важнейшая часть электрон[[о-лучевых приборов. [c.624]

    В люминесцентных лампах дневного света находящиеся а них пары ртути при прохожденин электрического тока испускают ультрафио.петовог излучение, которое вызывает свечение веществ, покрывающих тонким слоем внутреннюю поверхность лампы. Эти вещества—люминофоры — можио [юдобрать так, чтобы их излучение по своему спектральному составу приближалось к днси-ному свету. [c.624]

    Радиоактивностью называется снособность атомов неустойчивых и,зотопов некоторых элементов к самопроизвольному лучеиспусканию. Последнее обладает рядом общих свойств, которые служат для его качественного и количественного определения. Важн( й иими свойствами радиоактивного излучения являются а) действие его на фотографическую эмульсию, вызывающее ее почернение б) ионизация газов, т. е. возбуждение в них электро-нрово.цности в) высокий тепловой эффект процесса, отличающий его от обычных химических превращений г) возбуждение свечения некоторых веществ, напрнмер 2п.Я д) значительная проникающая способность и др. [c.61]


Библиография для Свечение: [c.195]   
Смотреть страницы где упоминается термин Свечение: [c.153]    [c.71]    [c.411]    [c.44]    [c.133]    [c.251]    [c.258]    [c.259]    [c.476]    [c.240]    [c.244]    [c.624]   
Физико-химические методы анализа Изд4 (1964) -- [ c.0 ]

Люминесцентный анализ неорганических веществ (1966) -- [ c.0 ]

Физико-химические методы анализа Издание 4 (1964) -- [ c.0 ]

Молекулярная биология клетки Т.3 Изд.2 (1994) -- [ c.51 ]

Молекулярная биология клетки Т.3 Изд.2 (1994) -- [ c.51 ]




ПОИСК







© 2025 chem21.info Реклама на сайте