Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хелаты металлов

    Жидкостные электроды. В жидкостных ионселективных электродах возникновение потенциала на границе раздела фаз обусловлено ионным обменом, связанным с различием констант распределения иона между жидкой и органической фазами. Ионная селективность достигается за счет различия в константах распределения, устойчивости комплексов и различной подвижности определяемого и мешающего ионов в фазе мембраны. В качестве электродноактивного соединения в жидкостных ионселективных электродах могут быть использованы хелаты металлов, ионные ассоциаты органических и металлосодержащих катионов ц анионов, комплексы с нейтральными переносчиками. Большое распространение получили пленочные пластифицированные электроды, выпускаемые промышленностью и имеющие соответствующую маркировку, например, ЭМ—СЮ4 01, ЭМ—НОз —01. Чувствительный элемент таких электродов состоит из электродноактивного компонента, поливинилхлорида и растворителя (пластификатора). В лабораторной практике используют аннонселективные электроды, для которых электродноактивным соел,инением являются соли четвертичных аммониевых оснований. [c.121]


    Хелатный эффект. Хелаты металлов (комплексы с замкнутыми циклами) устойчивее, чем комплексы с аналогичными монодентатными лигандами. Это явление получило название хелатного эффекта. Понятие хелатный эффект было введено Т. Шварценбахом в 1952 г. для того, чтобы отразить явление относительно более высокой устойчивости хелатов металлов по сравнению с аналогичными комплексами металлов с монодентатными лигандами или с хелатообразую-щими лигандами, но с меньшим числом хелатных циклов, содержаш,их те же донорные атомы. Так, аммиачные комплексы металлов менее устойчивы, чем комплексы этих металлов с этилендиамином, несмотря на то, что координированные частицы содержат одинаковое число атомов азота, присоединенных к металлу. Хелатный эффект подтверждается данными табл. 13.7. [c.258]

    Ионселективные электроды делятся на группы 1) стеклянные электроды 2) твердые электроды с гомогенной или гетерогенной мембраной 3) жидкостные электроды (на основе ионных ассоциатов, хелатов металлов или нейтральных лигандов) 4) газовые электроды 5) электроды для измерения активности (концентрации) биологических веществ. [c.116]

    НЖФ — универсального назначения для высококипящих соединений, хелатов металлов [c.105]

    Стеклянные шарики 0,1—0,2 1 0,05—0,5 Слабая 1—3 Анализ низших спиртов, стероидов, хелатов металлов [c.110]

    Некоторые наиболее распространенные типы химической трансформации функциональных групп молекул органических веществ представлены в табл. II1.1. Достаточно широко используются химические методы подготовки проб и неорганических материалов. Помимо получения летучих хелатов металлов и органических производных некоторых анионов [33, 34 1 отметим перспективный метод реакционной газовой экстракции, включающий химическую реакцию с образованием газообразного соединения определяемого элемента, выделение этого соединения в газовую фазу и последующую его идентификацию и определение [351. [c.161]

    При применении специфических катализаторов деструкцию полипропилена можно использовать в практических целях. Например, при нагревании полипропилена выше 160° С в атмосфере азота с 5 вес.% фтористого бора получаются полимеры меньшего молекулярного веса, причем они не содержат ни бора, ни фтора [15]. В присутствии хелатов металлов IV группы 2-й подгруппы и алюминия из аморфного полипропилена при 300° С в атмосфере азота количественно образуются олефины с 9—15 углеродными атомами [16]. [c.127]


    ВОЛЬТАМПЕРОМЕТРИЯ ЭКСТРАКТОВ ХЕЛАТОВ МЕТАЛЛОВ [c.457]

    Следует заметить, что природа ионизирующего растворителя может влиять на устойчивость экстрагируемых комплексов. В большинстве случаев экстрагируемые комплексы представляют собой хелаты металлов, которые имеют достаточно высокую устойчивость в неводных средах. Поэтому равновесия реакций комплексообразования в вольтамперометрии экстрактов не являются определяющими. Более важной является информация о механизмах электродных процессов и свойствах регистрируемого тока в зависимости от природы органического растворителя. [c.458]

    Поскольку экстракционное извлечение ионов металлов из водных растворов обычно осуществляют в виде устойчивых хелатов с органическими лигандами, то электрохимические реакции в меньшей степени осложнены сопутствующими химическими реакциями, влияющими как на форму, так и на положение поляризационных кривых на оси потенциалов. Кроме того, хелаты металлов, как правило, не заряжены, что уменьшает влияние сольватационных эффектов. Предпочтение отдают тем реагентам, которые имеют высокую экстракционную способность и избирательность, а электрохимические реакции их комплексов с ионами определяемых металлов протекают обратимо. [c.459]

    Несмотря на то, что общую схему электровосстановления хелатов металлов в неводных средах, которая удовлетворяла бы всем [c.459]

    О Жидкостная экстракция является эффективным инструментом для концентрирования следовых количеств ионов металлов иэ водных растворов в органические растворители (налример, U) с помощью органических лигандов НА, образующих гидрофобные хелаты металлов МА . [c.218]

    Рамановская спектроскопия является важным методом структурного анализа неорганических соединений, особенно хелатов металлов и ионов в водных растворах. Это возможно за счет легкого получения колебательных полос металл-лиганд при волновых числах меньших 500 см . Рассматривая КР-спектры с соответствующими ИК-спектрами в этой области, которые трудно получить (почему ), можно провести полный структурный анализ соединений. [c.197]

    На примере ряда хелатов металлов показано, что эти сорбаты вступают во взаимодействие с неполярным ядром мицеллы [c.175]

    При хроматографировании на колонках с хиральными фазами противоположной конфигурации [(К)- и (З)-хелаты металлов] наблюдалось полное изменение порядка элюирования энантиомеров на обратный. Этот элегантный и полезный метод позволяет путем сравнения данных интегрирования подтвердить энантиомерную чистоту фаз и правильность их идентификации. [c.213]

    Проведены исследования реологических свойств растворов простых эфиров целлюлозы [63, П8, 207, 223]. Реологические, пленкообразующие и адгезионные свойства имеют важное значение для практического применения простых эфиров целлюлозы. Простые эфиры используют в качестве эмульгаторов, диспергаторов, ста билизаторов в косметической, фармацевтической, пищевой, химической промышленности, в производстве пластмасс, в качестве материалов при изготовлении бумаги и текстильных изделий, в производстве цемента и бетона, в качестве загустителей типографских красок и лаков, для изготовления клеев, в частности для обоев и клеевых красок, в качестве защитных покрытий и пленок [8, 9]. Другие типы простых эфиров, которые хорошо набухают, но не растворяются в воде, применяют при получении гигиенических бумаги и тканей и для добавки к почвам. Эти продукты получают с помощью реакций сшивания цепей при обработке формальдегидом, гидроксиметилкарбамидом, эпихлоргидрином, хелатами металлов и т. д. [96, П5, 229]. [c.395]

    Декарбоксилирования а-аминокислот в модельных системах не происходит. Показано, что ионы металлов ингибируют эту реакцию. Последнее не является неожиданным, поскольку карбоксильная группа образует часть хелатной структуры, а карбоксилат-ион делит свою пару электронов с ионом металла. Можно ожидать, что эти факторы будут понижать тенденцию к элиминированию диоксида углерода. Хелаты металлов не способны принять предпочтительную для декарбоксилирования конформацию (см. ниже) и это, вероятно, вносит основной вклад в их сопротивление протеканию декарбоксилирования. [c.640]

    С этой целью эпихлоргидрин полимеризуют с алкилалюминием в присутствии хелата металла, иногда вместе с окисью этилена [43, 441. Хлоргидриновые каучуки разработаны фирмой Her ules Powder (США). [c.189]

    Т. VI, ч. 2. Алкоголяты, феноляты, еноляты и хелаты металлов. Органические производные кремниевой, борной, у)ольной, азотистой, азотной, фосфорсодержащих и других кислот, содержащих мышьяк, сурьму и серу, эфиры галогенова-тистых и хлорной кислот. Лактопы. [c.231]

    Для разделения воды, аминов, жирных кислот, полярных соединений, спиртов, хелатов металлов. Максимальная рабочая температура 180°С Хорошее разделение слабо и среднеполярных соединений. Механически очень прочен, стойкий до 1000°С Используется в препаративной хроматографии Для анализа полярных соединений [c.111]


    Хотя N2 очень инертен, он тем не менее образует нитриды с металлами и комплексы с некоторыми хелатами металлов. Эти комплексы обычно носят торцевой характер, например М=Ы—Ре. Штифель [12] предположил, что N2 сначала образует комплекс такого типа с атомом железа в молекуле молибдоферредоксина. Затем атом Мо(1У) может отдать два электрона на N2 [уравнение (14-9), стадия а]  [c.87]

    Само понятие химической связи было сформулировано уже в работах А М Бутлерова и оказалось чрезвычайно плодотворным для химии, хотя природа химической связи и оставалась неясной до появления квантовой механики и ее применения к изучению молекулярных систем Позднейшие исследования — как экспериментальные, так и теоретические — позволили понять некоторые особенности образования химической связи в различных рядах соединений и привели к введению в химию терминов ионная, ковалентная, полярная, координационная, донорно-акцепторная, многоцентровая связи и другие, с помощью которых принято характеризовать различные типы химической связи Число таких терминов довольно велико, и есть все основания ожидать, что дальнейший прогресс в химии приведет к необходимости ввести еще более обширную классификацию При этом большинство таких терминов являются по сути классификационными и не отражают ни общей для всех рядов соединений природы химической связи, ни конкретных особенностей химической связи в соединениях определенных классов В наибольшей степени сказанное относится к термину координационная связь В самом деле, совершенно разные по характеру связи в хелатах металлов, полисоединениях, ме-таллоценах итд называются координационными, в то же время в ионе [c.107]

    Дальний ИК-диапазон также важен для исследований структуры хелатов металлов и других соединений, содержащих тяжелые или слабосвязанные атомы. В отличие от рентгеноструктуриого анализа, методом колебательной спектроскопии можно изучать не только твердые (кристаллические), но и жидкие образцы. Значит, можно исследовать реальную молекулярную структуру в различных растворителях ие искаженную взаимодействиями в решетке и эффектами кристаллического поля. На рис. 9.2-22 приведено сравнение спектров образца хелата металла в твердом состоянии (в виде суспензии в нуйоле между полиэтиленовыми пластинами) и в растворе дихлорметана. Можно четко видеть, что более высокая (тетраэдрическая) симметрия комплекса устойчива только в растворе. Расщепление полос метал-лиганд в спектре твердого образца свидетельствует об искажении этой симметрии в кристаллическом состоянии. [c.196]

    В каком спектральном диапазоне промляются колебания связей метал-лиганд хелатов металлов  [c.200]

    ИСЭ с жидкими мембранами в качестве активного вещества могут содержать хелаты металлов,ионные ассоциаты и кошшексы с нейтральными переносчиками,растворенные в несмешивающемся с водой органическом растворителе.Возникновение потенциала на границе раздела фаз связано с различием констант. распределения определяемого иона в жидкой и органической фазах. Ионная селективность достигается за счет экстракционных,комшгексообраэовательных эффектов и различной подвижности ионов в пределах мембраны. [c.41]

    Сильноосновные анионообменники обычно используют в той же ионной форме, что и хелатообразующий агент, поскольку смола в С1- или ОН-форме характеризуется низким сродством к хелатам металлов. Как правило, коэффициенты распределения хелатов отдельных лантаноидов повышаются при переходе от лантана к европию и затем существенно уменьшаются в ряду европий — лютеций. Что касается других элементов группы 3 А, то коэффициенты распределения скандия находятся между значениями для Tm и Ег, коэффициенты распределения иприя — между значениями для Ег и Но. [c.203]

    Особенно много внимания уделено изучению хелатов металлов триады железа. Механизм их электровосстановления в неводных растворах определяется в первую очередь природой центрального атома. Так, полярографическое исследование восстановления ди-тиокарбаминатов различных металлов на Hg-элeктpoдe в ДМФ показало, что хелаты по своему электрохимическому поведению делятся на две группы. Полярограммы, относящиеся к комплексам Ре +, Со , N1 +, СгЗ+, Мп +, содержат п ступеней, соответствующих последовательному переносу п-электронов. Продуктом конечной необратимой стадии является металл на поверхности ртути. Хелаты металлов с заполненными -оболочками (2п , (1 +, 8п2+, Hg2+, РЬ + и т. д.) ведут себя иначе. Для комплексов данных металлов на полярограммах наблюдается одна волна, соответствующая восстановлению центрального иона до металла, разряд в большинстве случаев близок к обратимому. Работы по изучению электрохимического поведения хелатов переходных металлов имеют практическое значение. Они позволяют решать вопросы электрокатализа, гальваностегии, электросинтеза и электроанали-тического определения металлов [68, 64, 65]. [c.99]


Библиография для Хелаты металлов: [c.272]    [c.290]    [c.477]   
Смотреть страницы где упоминается термин Хелаты металлов: [c.200]    [c.271]    [c.482]    [c.546]    [c.601]    [c.27]    [c.460]    [c.481]    [c.484]    [c.153]    [c.173]    [c.41]    [c.62]    [c.68]   
Смотреть главы в:

Хроматографические методы в неорганическом анализе -> Хелаты металлов


Водородная связь (1964) -- [ c.14 , c.229 , c.377 ]

Химия координационных соединений (1966) -- [ c.26 , c.82 , c.143 ]

Хроматография неорганических веществ (1986) -- [ c.0 ]

Газовая хроматография - Библиографический указатель отечественной и зарубежной литературы (1961-1966) Ч 2 (1969) -- [ c.169 , c.178 , c.183 , c.188 , c.192 , c.193 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ металлов и их неорганических соединений, гидридов, хелатов

Анализ хелатов металлов

Аномальное поведение малых количеств хелатов металлов в хроматографических колонках

Взаимодействия металл—имидазол без образования хелатов

Вклад жидкой фазы и твердого носителя в удерживание хелатов металлов

Влияние числа циклов и заВисимость устойчивости хелата от максимального координационного числа металла

Вольтамперометрия экстрактов хелатов металлов

Газовая хроматография хелатов металлов при высоких давлениях

Галогены, гидриды, хелаты металлов и другие летучие неорганические соединения

Другие хелаты металлов

Исследование термодинамики растворения хелатов металлов в жидких фазах

Карбонилы металлов карборанильные хелаты

Комплексы с солями металлов, кислотами Льюиса и хелаты металлов

Конденсация с участием хелатов металлов

Летучие хелаты металлов с другими лигандами

Люминесценция хелатов, влияние металла

Металлы и хелаты в биологических системах

Метод 1. Поликонденсация бис (аминокислот) с солями или хелатами металлов

Метод 1. Поликонденсация бис(8-оксихинолинов) с солями или хелатами металлов

Метод 1. Реакция дикарбонильных соединений и диаминов с солями или хелатами металлов

Необходимые наблюдения в газовой хроматографии хелатов металлов

Поведение лиганда и синтез хелатов металлов

Поведение хелатов металлов в хроматографической колонке

Полимеры, содержащие металл титан алкоголяты хелаты

Применение экстракции для изучения быстрых реакций Экстракция внутрикомплексных соединений и образование аддуктов Синергизм при экстракции хелатов металлов. Г. Ирвинг

Разделение хелатов металлов с применением модифицированных газохроматографических методов

Свойства хелатов металлов и условия их хроматографирования

Хелаты

Хелаты металлов пентандиона-2,4 (АА)

Хелаты металлов с другими Рдикетонами

Хелаты металлов смешанных галогенированных 3-дикетонов

Хелаты переходных металлов

Щелочноземельные металлы хелаты с ДЦТА, значения

Экстракция хелатов металлами

Электродный потенциал с хелатами металлов

медь бензоилацетонат хелаты металл НА группы алкилы



© 2025 chem21.info Реклама на сайте