Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электролиз определение понятия

    В том случае, когда при определенных условиях на электроде выделяются одновременно два вещества, для оценки эффективности использования электричества на выделение данного продукта, ради которого ведется электролиз, применяют понятие выхода по току. [c.288]

    Более точным определением понятия электролиз является следующее электролизом называется электрохимическое окисление или восстановление веществ на электродах, происходящее с потерей или присоединением электронов частицами вещества. (Прим. ред.) [c.31]


    Все изложенные соображения относятся лишь к грани кристалла определенного символа. При катодном выделении металлов, как правило, образуются поликристаллические осадки, т. е. осадки, состоящие из большого числа связанных между собой мелких кристаллов (или зерен) с гранями различных символов, что осложняет картину процесса. Одно из этих осложнений связано с тем, что грани различных символов растут с неодинаковой скоростью, и характер осадка изменяется в процессе электролиза. Для характеристики катодных осадков наряду с кристаллографической структурой используются поэтому и такие понятия, как структура роста, текстура и характер осадка. [c.343]

    При введении понятий чисел переноса рассматривалось прохождение тока через ячейку, условно разделенную на катодное, промежуточное и анодное пространство, и было показано, что никаких изменений концентрации ионов в промежуточном пространстве не происходит. Все концентрационные изменения были локализованы в катодном и анодном отделениях. Видоизменим теперь условия электролиза. Пусть катодное пространство отделяется от среднего промежуточного мембраной, проницаемой только для катионов (катионитовая мембрана). Соответственно мембрану, пропускающую только анионы, используем для отделения промежуточного пространства от анодного (анио-нитовая мембрана). Такие мембраны, обладающие избирательной способностью пропускать ионы одного определенного знака (катионы или анионы), изготавливаются на основе ионитовых смол. При прохождении электрического тока через такую ячейку происходит изменение концентрации (рис, 25), [c.40]

    Общая ошибка всех этих исследователей в настоящее время совершенно очевидна — они не замечали того, что сродство характеризуется не только количественным фактором, но и фактором интенсивности. Поэтому, когда на основании термохимических измерений они приходили к выводу, что силы сродства (фактор интенсивности) всех элементов различны, они толковали этот факт как признак того, что валентности (количественный фактор) не могут быть одинаковыми, будучи чуть больше или чуть меньше небольших целых чисел, обычно служащих для их выражения. Однако поскольку законы электролиза Фарадея были этим исследователям известны, такое смешение понятий кажется нам несколько удивительным, Повидимому, так получалось потому, что в пределах их знаний все силы, способные к действию на расстоянии, как, например, электростатическое или магнитное притяжение, вели себя так, как если бы они распределялись равномерно по всей поверхности материи, несущей эти силы, а не оказывали такого действия, как если бы они были сконцентрированы в немногих определенных точках, тогда как современная электронная теория и квантовая теория рассматривают последнее как аксиому. Если же стать на их точку зрения, то совсем не будет казаться невероятным, что когда один атом подвергается действию силы сродства другого атома, то в образование валентной связи будут вовлекаться различные количества такого излучаемого сродства, и в результате будут оставаться свободными различные количества остаточного сродства. На такую точку зрения встал Вернер [18], развивая свою теорию химического сродства, впервые опубликованную в 1891 г. [c.20]


    Фарадей предложил ряд определений важнейших понятий, которые используются и в наши дни. Он ввел понятия электролиз , электролит , электрод , анод , катод . Частицы, образующиеся при электролизе, Фарадей называл ионами, которые в зависимости от направления их движения в электролите разделял на анионы и катионы. Среди исследований по электричеству работы Фарадея явились вершиной научных достижений. В химии же они стали эффективными только в сочетании с работами С. Аррениуса и Я. Г. Вант-Гоффа. Помимо одной из самых его известных книг История свечи в 1827 г. он опубликовал тоже ставшую очень популярной книгу Способы работы в химической лаборатории . [c.85]

    В первой части учебника приводятся основные сведения об автоматизированном электроприводе, аппаратах управления и защиты электропривода, сведения об электрооборудовании общего назначения, применяемом в электрических кранах, лифтах, механизмах непрерывного транспорта, компрессорах, насосах н вентиляторах. Во второй части учебника — сведения и указания по выбору специального электрооборудования, применяемого в металлургической, металлообрабатывающей, машиностроительной, нефтеперерабатывающей, химической, шинной, резиновой, целлюлозно-бумажной и других отраслях промышленности, а также в установках электросварки, электролиза, гальванических покрытий и электростатической окраски. Приведены сведения об электроустановках электрического освещения, электрических сетях и присоединении сетей к электрооборудованию, о принципах защитного заземления и зануления, молниезащите и защите от статического электричества. Даны формулы и примеры определения мощности электродвигателей, величины освещенности и сечения проводников, основные понятия об автоматизации, диспетчеризации и телемеханизации управления электроустановками. [c.3]

    Однако поскольку электролиз ведется с целью получения какого-либо определенного продукта, появляется необходимость в том, чтобы определить долю израсходованного на этот процесс электричества. Для этого было введено понятие выхода по току т], определяемое отношением количества вещества, фактически полученного при электро- [c.91]

    Проблема образования молекул из атомов, химической связи атомов в молекуле, строения молекул и их реакционной способности имеет первостепенное значение в химии и давно привлекает к себе внимание. Еще в XIX в. был накоплен ценный экспериментальный материал об особенностях образования различных молекул и сделаны важные обобщения. В науку было введено понятие химического эквивалента и валентности. Последнюю определяли формально как численную характеристику способности атомов данного элемента соединяться с определенным числом атомов другого элемента. Берцелиус, исследуя электролиз, пришел к заключению об электрической природе валентных сил. Элементам, выделяющимся на аноде (кислород, хлор), приписывался отрицательный заряд в соединениях и, следовательно, отрицательная валентность, а элементам, выделяющимся на катоде (водород, металлы), наоборот, положительный заряд и положительная валентность. [c.16]

    Понятие о потенциале разложения и перенапряжения. В процессе электролиза сила тока, а значит и количество вещества, образующегося в единицу времени, зависят от разности потенциалов, создаваемых на электродах. С повыщением этой разницы увеличивается сила тока, с уменьшением — ее сила тока снижается. Но для проведения электролиза в практике необходимо, чтобы разность потенциалов была не меньше, а даже и несколько больше некоторой определенной для данного процесса величины, необходимой для преодоления электродвижущей силы (э. д. с.) поляризации. Эта наименьшая разность потенциалов, требуемая для проведения процесса электролиза, называется потенциалом разложения, или напряжением разложения. [c.121]

    Понятие простого избирательного сродства по Бергману наилучшим образом дополнялось понятием массы по Бертолле. Однако, как уже говорилось выше, после признания закона определенных отношений и тщательных исследований Пруста труды Бертолле не получили отклика, так как в то время все химики были заняты проблемой установления состава тел и экспериментального подтверждения справедливости атомной теории. В первые десятилетия прошлого века, особенно под влиянием законов электролиза Фарадея, электрохимические доктрины вызвали большой интерес у химиков и вместе с тем вновь возникла все еще жгучая проблема химического сродства. Исходя из термохимических соображений, Томсен (1854) и Бертло (1867) поставили эту проблему на экспериментальное основание. Томсен избрал мерой химического сродства количество теплоты, выделяющейся при химических реакциях, исходя из положения, согласно которому напряженность силы, проявляющейся при образовании соединения, может быть измерена в абсолютных единицах, потому что она равна выделяющемуся при этом количеству теплоты. [c.377]

    Понятие перенапряжение связано с избыточным напряжением, которое необходимо приложить сверх электродвижущей силы системы в равновесных условиях для проведения процесса электролиза с определенной скоростью. Расход электрической энергии на получение водорода поэтому больше, чем это определяется термодинамическими подсчетами. Это добавочное напряжение обеспечивает в данных условиях определенную скорость разряда водородных ионов с последующим образованием и выделением пузырьков водорода. [c.37]


    Использование понятия о двойном электрическом слое может оказаться полезным при определении величины диэлектрической проницаемости и проводимости жидкости, при оценке поляризации электродов в процессе электролиза и т. д. [c.33]

    Так же последовательно электронные представления проведены и в главе Теория электролитической диссоциации . Здесь Беркенгейм пишет Электронная теория дала нам понятие о строении атомов элементарных тел она выяснила нам, что мы должны понимать теперь под химическим соединением... Без ионизации. т. е. без предварительного образования ионов из взятых атолгов, мы не мыслим образования какого бы то ни было соединения [там же, стр. 83]. С этой точки зрения он дает определение понятиям основания и кислоты Основанием мы называем такое соединение положительных ионов водорода и любого металла с каким-нибудь отрицательным ионом, в котором при диссоциации диссоциирует ион металла, а ион Н остается связанным с отрицательным ионом, например. О" кислотой же мы называем такое водородсодержащее соединение, в котором диссоциирует именно ион Н >. [там же, стр. 911. Рассматривая различного рода неорганические реакции (обменного разложения, окисления н восстановления, соединения и разложения, а также электролиз), Беркенгейм неизменно пользуется ионио11 теорией строения и химических своГ1СТВ неорганических [c.46]

    Рассмотрим некоторые соотношения, складывающиеся в диафрагм енных электролизерах. Важным понятием является степень превращения поваренной соли при электролизе. Так называют отношение числа молей Na l, превратившихся в NaOH, к числу молей Na I, поступивших на электролиз. Величина степени превращения, с которой работает производство, определяет материальные потоки в цикле и в конечном итоге оказывает существенное влияние на экономику производства. Согласно данному определению степень превращения выражается следующей формулой  [c.44]

    На протяжении почти 20 лет после возникновения полярографии (1922 г.) основное внимание сосредоточивалось на объяснении кривых зависимости силы тока от напряжения (потенциала электрода), полученных при электролизе с применением ртутного капельного электрода. Позднее на ртутном капельном электроде исследовались и другие зависимости (например, аависимость производной от тока по потенциалу от потенциала, зависимость тока от времени, зависимость потенциала капельного электрода от времени, зависимость производной от потенциала по времени от времени и др.). Успехи, достигнутые при работе с ртутным капельным электродом, дали толчок к исследованиям с помощью других электродов, например со струйчатым электродом, висящей ртутной каплей, с вращающимся и вибрирующим ртутными электродами и др. Благодаря этому содержание понятия полярография значительно расщирилось. Оно не охватывает исследования, проведенные на твердых электродах, но включает исследование физико-химических процессов и явлений, наблюдаемых на ртутных капиллярных электродах при их поляризации заданным напряжением или заданной силой тока. Под выражением капиллярный электрод мы понимаем прежде всего ртутный капельный электрод, с которым было проведено наибольшее количество исследований, ртутный струйчатый электрод и висящую ртутную каплю. Наиболее важным свойством этих электродов является то, что результаты, полученные с их помощью, очень хорошо воспроизводятся. Еще со времен Фарадея ртуть в электрохимии применяется как наилучший материал для электродов. Это обусловлено ее сравнительно высокой химической стойкостью, большим перенапряжением водорода на ртути, а также тем, что ее можно сравнительно легко получить в очень чистом виде. К тому же применяемые в полярографии электроды (капельные и струйчатые) непрерывно обновляют поверхность, вследствие чего изучаемые процессы протекают в достаточно строго определенных условиях и не подвергаются влиянию предшествующих процессов. [c.11]

    Очень большое значение имеет, конечно, не только цвет, но и качество покрытия. Обычно при золочении стараются получить красивую блестящую пленку. Но что такое блеск Оказывается, у этого понятия нет строгого научного определения. Ощущение блеска субъективно, оно возникает, когда поверхность обладает двумя противоречивыми свойствами-зеркальным и рассеянным отражением света. Качество позолоты зависит от условий электролиза, от состава электролита и состояния поверхности, на которую оседает металл. Осадок может быть плотным или рыхлым, блестящим или матовьш . Чтобы он получился блестящим, в состав электролита вводят блескообразователи-специальные органические или неорганические соединения. Например, блеск покрытия улучшается при использовании соединений никеля, кобальта, титана, особенно если ввести в электролит органические комплексообразователи типа многоатомных спиртов, алифатических аминов. Из органических добавок часто используют соединения, содержащие серу, например, тиомочевину. Качество позолоты, прежде всего, зависит от подготовки поверхности, на которую ее наносят. Особенно это важно для очень тонких покрытий, когда золотая пленка в точности повторяет рельеф поверхности если поверхность [c.16]

    Однако после того, как было уточнено понятие о валентности углерода и был определен молекулярный вес так называемых радикалов, оказалось, что бензоил, описанный Лораном, как свободный радикал, является в действительности бензилом СбНзСО СОСбНб, что какодил Бунзена существует только в виде днмера (СНз)2Аз—Аз (СНз)2. Шорлеммеру принадлежит доказательство того, что метил, полученный Кольбе при электролизе уксуснокислого калия, в действительности является этаном. [c.138]

    Понятие о радикале, введенное в химию Лавуазье в 1785 г., оказало, как уже отмечалось выше, значительное влияние па развитие теории органической химии в начале XIX века. Поэтому в этот период были сделаны многочисленные попытки выделить радикалы в свободном несвязанном состоянии. В 1815 г. Гей-Люссак получил циан — газообразное вещество с эмпирической формулой СН, который впоследствии был принят за радикал синильной кислоты H N. Бунзен, работая с органическими соединениями мышьяка (1841 г.), выделил очень реакционноспособное вещество какодил (СНз)2А8, которому также приписывали строение радикала. Наконец, Франкланд (1848—1850 г.г.) при обработке йодистого этила 2H5J цинком получил этил , а Кольбе при электролизе уксуснокислого калия — метил . После признания (благодаря работам Канницаро 1856 г.) значения закона Авогадро и вытекающего из него метода определения молекулярных весов стало ясным, что все формулы свободных радикалов следует удвоить метил в действительности является этаном, этил—бутаном, а циан и какодил представляют собой КС—СК и <СН,)аА8—А8 СНз)г. Теория валентности (1857 г.), установившая неизменную четырех- [c.365]


Смотреть страницы где упоминается термин Электролиз определение понятия: [c.244]    [c.299]    [c.242]    [c.365]    [c.441]   
Учебник физической химии (1952) -- [ c.253 ]




ПОИСК





Смотрите так же термины и статьи:

Электролиз Понятие

Электролиз определение

определение понятия



© 2025 chem21.info Реклама на сайте