Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализ кислотный в неводных растворах

    Если применять тяжелую воду, то очень быстро обменивается водород в связях О—Н, N—Н, S—И, Hal—Н, но обычно не удается осуществить обмен в связях С—Н, наиболее перспективный для решения многих вопросов теоретической органической химии. Легко заметить, что обмен водорода на дейтерий тяжелой воды происходит лишь в связях С—Н тех веществ, которые в водном растворе представляют собой слабые кислоты или слабые основания, причем обмен катализируют сильные основания и кислоты. Ингольду [14] удалось заменить водород в некоторых углеводородах на дейтерий, действуя на них дейтеросерной кислотой. Эти факты навели на мысль о кислотно-основной природе водородного обмена в растворах, из которой следовало, что если усилить кислотные или основные свойства углеводородов и их производных, применяя соответствующие растворители и катализаторы, то водородный обмен в СН-связях станет обычным явлением [15]. Знание закономерностей кислотно-основного равновесия и катализа в неводных растворах помогло найти растворители и катализаторы, позволившие значительно расширить самую область реакций водородного обмена. Кроме того, знание закономерностей кислотно-основного взаимодействия помогло предвидеть, какие факторы должны влиять па водородный обмен. [c.8]


    Кислотно-основной катализ в неводных растворах [c.13]

    Теория Бренстеда в свое время не только навела порядок в хаосе отдельных, не связанных друг с другом фактов о реакциях кислот и оснований, которые были известны к моменту ее возникновения в 1923 г., но без нее было бы невозможно истолкование, а тем более предвидение реакций кислот и оснований в неводных растворах, объяснение явлений кислотно-основного катализа и т. д. [c.248]

    Многие органические вещества способны катализировать различные реакции. Все органические кислоты или основания могут служить в принципе катализаторами в общем кислотном или основном катализе. Органические лионий- или лиат-ионы участвуют в создании определенной кислотности — основности соответствующего неводного раствора, определяя тем самым скорость реакций, чувствительных к специфическому кислотному или основному катализу. [c.421]

    Эти взаимосвязанные проблемы сольватации и кинетики переноса протона будут рассмотрены здесь на примерах процессов в водных и неводных растворах, а также в твердой фазе, например во льду. Однако общие вопросы химии кислотно-основного равновесия не будут рассматриваться подробно, за исключением тех случаев, когда они имеют отношение к некоторым специфическим термодинамическим и кинетическим проблемам, связанным с сольватацией и переносом протона (см. раздел VII) кислотно-основное равновесие и катализ достаточно подробно рассмотрены в различных монографиях [3, 9]. В обзор не включены также гетерогенные реакции переноса протона на электродах. В первую очередь здесь рассматриваются сольватация протона и доказательства его существования в растворе. [c.56]

    Если источником каталитически активного водородного нона является слабая кислота, то необходимо учитывать равновесие диссоциации слабого электролита и изменение константы диссоциации в зависимости от концентрации электролита, среды и температуры. Бренстед [71 назвал это явление вторичным кинетическим солевым эффектом , но правильнее будет опустить слово кинетический , а слово солевой заменить термином электролитический . Стремление понять этот эффект привело к изучению констант диссоциации кислот в растворах солей [8 . Отсутствие количественных данных по константам диссоциации в неводных растворах тормозит изучение кислотного катализа в неводных средах. [c.68]

    Лет двадцать назад было распространено мнение о том, что в растворах электролитов надо учитывать только силы электростатического взаимодействия между ионами. При этом преимущественно имели дело с разбавленными водными растворами. Но опыты с растворами в неводных растворителях е низкой диэлектрической постоянной поколебали эту точку зрения. Так, например, в 1936 г. при обсуждении опытов по кислотному катализу реакции аммонолиза в жидком аммиаке отмечалось [5], что совокупность имеющихся данных говорит о наличии очень значительных междуионных сил в аммиачных растворах электролитов, которые, но-видимому, не могут быть полностью сведены к простому электростатическому взаимодействию, как это отчетливо заметно, например,, в случае ацетатов. [c.252]


    Соотношения линейности (IX, 49) и (IX, 51) получили широкое подтверждение на многочисленных рядах однотипных катализаторов в кислотно-основном катализе в водных и неводных растворах. Соотношение линейности (VIII, 51) было проверено на реакции разложения нитрамида в разных растворителях и в присутствии различных основных катализаторов  [c.425]

    Кислотный катализ в неводной среде инверсия /-ментона в хлорбензольном растворе температура 99,4 0,05° С, образуются комплексы между /-ментоном и 3 молекулами хлор5 сусной кислоты, фенилпропионовой кислоты, ж-нитро-бензойной кислоты, бензойной и уксусной кислот в хлорбензоле, предполагается протолитическая реакция Кетонное расщепление а, а-диметилуксусной кислоты в о-хлоранилин и анилин в хлоридных буферных растворах Бромирование ацетона, энолизованного в легкой воде и в смеси легкой и тяжелой воды при 25° скорость броми-рования ацетона эквивалентна скорости обмена первого атома водорода Бромирование ж-нитрацетофенона, о-нитранилина и р-хлор-о-нитранилина Образование анилидов из органических кислот и анилина [c.212]

    В развитии наших представлений о природе кислот и оснований в последнее время сыграли большую роль работы по исследованию скорости обмена водорода на дейтерий, проводимые в СССР А. И. Шатенштейном. В этих работах им разработан новый плодотворный метод установления слабых кислотных и основных свойств в неводных растворах. Исследования показали, что в таких сильно основных (в нуклеофильных) растворителях, как аммиак, гидразин, скорость обмена водорода на дейтери значителыно увеличивается, особенно в присутствии амида -калия. Если в воде при щелочном катализе в обмене могут участвовать только те углеводороды, которые наиболее легко дают металлические производные, то в жидком аммиаке в присутствии амида калия могут обменивать водород на дейтерий ъсс ароматические, этиленовые и даже некоторые предельные насыщенные углеводороды. [c.566]

    Распределение кислотных центров. Измерение кислотности часто проводят по адсорбции довольно сильного основания — пиридина. Однако для оценки силы кислотных центров и их роли в катализе удобнее использовать менее слабые, но более чувствительные к олефинам и ароматическим углеводородам основания. Опубликован ряд работ, в которых кислотность определяли методом Бенеси [95], Для этого катализатор титруют отдельными порциями неводного раствора н-бутиламина в присутствии гамметоЬских индикаторов или триарилкарбинолов [96], способных при протонировании генерировать ионы карбония. Согласно опубликованным ранее данным [97], в цеолите НУ содержится набор кислотных центров, сила которых меняется в следующих пределах +3,3>Яо>-8,2 (ббльшая кислотность соответствует меньшим абсолютным значениям). [c.30]

    Соотношение между каталитической активностью протолита и его силой было 5гетановлено Бренстедом в 1924 г. в форме известного уравнения кл = СаК. а для кислотного катализа и кв = СвКв для катализа основанием, где кл кв — константы скорости. Ка К в — константы ионизации кислоты и основания, С А, Ов, а, р — постоянные величины, характеризующие не только реакцию, но среду и температуру. Они зависят также от знака и величины заряда катализатора. Соотношение Бренстеда было подтверждено нри широкой проверке на примере многих каталитических реакций в водных и неводных растворах, см. [60, стр. 82]. [15, стр. 181]. [c.65]

    Как правило, результаты каталитических измерений легче поддаются объяснению для водных, чем для неводных растворов, поскольку наши сведения о свойствах последних (особенно растворов электролитов) очень ограничены. Часто бывает необходимо пользоваться неводными растворителями, учитывая растворимость вен1еств или химическую инертность растворителя. Исследования с применением различных растворителей внесли ясность в ряд вопросов общей теории кислотно-основного катализа. [c.13]

    Некоторые нуклеофильные агенты, содержащие в определенном положении по отношению к нуклеофильному центру кислотную группу, обладают особой реакционной способностью. Это их свойство объясняют часто внутримолекулярным общекислотным катализом. В неводных растворителях именно такое содействие приводит в ряде случаев к значительному ускорению реакции (при отсутствии внутримолекулярного катализа эти реакции протекают лишь при наличии специального катализатора или при сольватации третьей молекулой). Однако в водном растворе молекулы воды, по-видимому, эффективно сольватируют молекулы субстрата за счет водородных связей еще до реакции, и поэтому известно мало систем, для которых можно показать, что кислотная группа нуклеофила действительно вытесняет молекулу воды и выполняет роль катализатора. Многие из предполагаемых механизмов подобного рода, якобы происходящих в водном растворе, не выдержали тщательной проверки. Еще большее число таких систем пока подробно не анализировали. В тех случаях, когда предполагают наличие внутримолекулярного катализа под действием протонодонорных групп (например, с участием гидроксильной группы), целесообразно изучить реакционную способность родственных соединений, в которых кислотный атом водорода замещен алкильной группой, а также соединений, у которых кислотная группа размещена в таком положении, откуда она может оказывать лишь полярное влияние как заместитель, но не может участвовать в реакции в качестве внутримолекулярного катализатора. [c.89]


    Из" теории Брёнстеда вытекает линейная зависимость р/Сдип кислоты (основания) от 1/е (гл. IX). Логарифмируя уравнения V. 2), легко показать, что для группы объектов с постоянными G и а такая же зависимость должна наблюдаться и для каталитических коэффициентов. Естественно, что и отклонения от этой зависимости обнаружатся при сопоставлении растворителей различной химической природы. По-видимому, можно считать, что соотношение (XV. 2) будет удовлетворительно выполняться в водно-неводных растворителях при не очень низкой концентрации воды. Данные по каталитическим коэффициентам кислотноосновных реакций в чистых неводных растворителях пока крайне малочисленны. Однако для характеристики реакционной способности веществ в реакциях кислотно-основного катализа можно использовать значения констант скоростей изотопного обмена водорода в неводных растворах, изученные довольно широко за последние десятилетия (прежде всего, в работах А. И. Шатенштейна и сотрудников, см. ниже). [c.344]

    Необходимо подчеркнуть, что линейное соотношение между скоростью реакций специфического кислотно-основного катализа и концентрацией катализатора на практике наблюдается лишь применительно к разбавленным водным растворам. В водно-органических и неводных средах, а также при повышенных концентрациях компонентов, первый порядок по катализатору обычно меняется на дробный. Для объяснения таких фактов многие авторы прибегали к сложным построениям, касающимся механизма реакции на уровне субмолекулярных частиц и активированных комплексов. Просто и убедительно решил этот вопрос Гаммет [209], предложивший применять для количественной оценки кислотно-основных свойств реакционных сред величину Яо, названную функцией кислотности. В основе метода Гаммета лежит измерение в исследуемой среде степени диссоциации какого-либо вещества — индикатора, равновесное содержание недиссоцииро-ванной и ионизированных форм которого удобно для экспериментального определения (например, спектрофотометрическим [c.76]

    Особый интерес представляют такие растворители, как углеводороды, не имеющие ни кислотных ни основных свойств и не способные ни терять, ни присоединять протон. Они часто называются апротонными типичными примерами являются углеводороды и их галогенные производные. Хотя в этих растворителях не присутствуют ионы, сходные с ионами водорода или гидроксила, и хотя самые крепкие кислоты и щелочи остаются недиссоциированными, тем не менее их растворы обладают каталитической активностью, часто превосходящей активность водного раствора. Это является доказательством возможности катализа недиссоциированными кислотами и основаниями изучение катализа в апротонных растворителях должно быть много проще, чем в растворителях других типов. Так, например, если уксусная кислота растворена в воде, то раствор содержит частицы HgO, HjO , OH , Hg OOH и Hg OO , которые все могут быть каталитически активными [ср. уравнение (8)], тогда как в растворе уксусной кислоты S бензоле единственно активным веществом является сама молекула уксусной кислоты. На практике наряду с этим преимуществом имеются и ос.тожнения, связанные с кинетикой каталитических реакций в подобных растворителях. Они возникают вследствие низких диэлектрических постоянных неводной среды, так как последние благоприятствуют сильным взаимодействиям между полярными молекулами и приводят к ассоциации реагирующих веществ и катализаторов, а также к кинетическим аномалиям, сходным с солевыми эффектами. Тем не менее измерения в апротонных растворителях нередко дают интересные сведения и проводятся все чаиге. [c.14]


Смотреть страницы где упоминается термин Катализ кислотный в неводных растворах: [c.347]    [c.347]    [c.36]    [c.128]    [c.340]    [c.128]    [c.340]   
Теории кислот и оснований (1949) -- [ c.83 , c.191 , c.267 ]




ПОИСК





Смотрите так же термины и статьи:

Катализ кислотный

Кислотность неводных растворов

Кислотность растворов

Растворы неводные



© 2024 chem21.info Реклама на сайте