Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Масс-спектрометр детектор

    Изменяя напряженность магнитного поля, ионизированные частицы (или ионы) фокусируют на детектор, входящий в измерительную систему (рис. 31.14). Сигналы детектора записывают в виде масс-спектра по полученному масс-спектру идентифицируют вещества, определяют их массы и строение. По интенсивности ионных токов определяют количества вещества. Разделение и распознавание ионов в масс-спектрометрах основаны на зависимости их движения в электрическом и магнитном полях от собственной массы и скорости, описываемой уравнением  [c.751]


    Масс-спектрометрия в газовой хроматографии. Применение масс-спектрометрии для анализа газохроматографических фракций позволяет проводить качественный анализ компонентов разделенной в колонке смеси непрерывно, без выделения выходящ их из колонки веществ. Второе существенное преимущество метода состоит в том, что для масс-спектрометрии вполне достаточны даже те количества вещества, которые получают при анализе на капиллярной колонке. Таким образом, масс-спектрометр может выполнять функцию детектора. Такой метод сочетания хроматографического анализа с масс-спектрометрическим получил название хромато-масс-спектрометрии. [c.195]

    Сочетание масс-спектрометрии с газожидкостной хроматографией дает превосходный метод анализа смесей. В этом случае требуются очень небольшие количества вещества. Масс-спектрометр используется в качестве детектора в газожидкостной хроматографии, и многочисленные масс-спектры регистрируются по мере поступления компонентов из колонки. Частично разрешенные пики в хроматограмме легко идентифицируют по изменению во времени масс-спектра вещества, соответствующего этому пику. [c.323]

    Количеств. М. а. основан на измерении величин, зависящих от кол-ва или концентрации определяемого хим. соед.,-плотности, мол. массы, теплопроводности, интенсивности поглощения или испускания электромагн. излучения и т. д. Наиб, распространены разл. хроматографич. методы с использованием разнообразных детекторов. Для количеств, анализа смесей орг. в-в (в частности, углеводородов) успешно применяют масс-спектрометрию и хромато-масс-спект-рометрию. [c.120]

    Заслуживают внимания попытки использовать достоинства хроматографических и масс-спектрометрических методов анализа в комбинированных приборах, где масс-спектрометр качественно расшифровывает наличие примесей и компонентов на участках хроматограммы с неполным распределением пиков. В одном из таких приборов [57] газовый поток, выходящий из колонки хроматографа, делится на две равные части с помощью двух параллельно включенных капилляров длиной 0,5 м и внутренним диаметром 0, 5 мм. Одна часть потока подается в детектор, а другая— в масс-спектрометр. Детектор дает хроматограмму, специфичную для определяемого компонента, а масс-спектрометр расшифровывает присутствие примесей. [c.169]


    Использование для идентификации одного или немногих пиков, что важно при анализе очень сложных смесей, описано в работе [215]. В сообщении [216] доказывается целесообразность использования помимо масс-спектрометра и другого детектора. В работе i[217] подробно рассматривается вопрос о возможных химических превращениях анализируемых веществ (на примере азотсодержащих соединений), протекающих в хромато-масс-спектрометре. [c.138]

    Основной недостаток метода отбора фракций заключается в том, что при последовательном масс-спектрометрическом анализе выделяемых компонентов затрачивается очень много времени. Кроме того, использование холодных ловушек требует высокого мастерства для получения образцов, свободных от примеси ранее выходящих компонентов. Эти затруднения могут быть устранены только одним путем органическим слиянием хроматографа и масс-спектрометра, т. е. превращением масс-спектрометра в хроматографический детектор, позволяющий тем или иным способом расшифровывать последовательно каждый пик хроматограммы. [c.127]

    Ионный ток Ij ионов типа /, регистрируемый детектором в масс-спектрометре  [c.269]

    Применение высокоэффективных капиллярных набивных колонн с ГТС дало возможность использовать в качестве детектора масс-спектрометр, позволяющий исследовать различия в структуре мо- [c.22]

    Таким образом,из-за различий в структуре молекул изомеров и вызываемых ими различий в характере и степени внутримолекулярного напряжения при низкой энергии электронного удара в ионном источнике масс-спектрометра фрагментация молекул изомеров идет различными путями. Это можно использовать как для суждения о структуре молекул изомеров, так и для хроматографического разделения их смесей при использовании масс-спектрометра в качестве детектора, особенно при детектировании по отдельным, образующимся при фрагментации ионам. [c.24]

    Масс-спектрометр в основном состоит из четырех функциональных узлов, обеспечивающих введение пробы (система напуска), получение ионов (ионный источник), разделение ионов по массам (масс-анализатор) и регистрацию ионного тока (детектор). [c.285]

    Если при распаде образуются метастабильные ионы, то установление структурной формулы облегчается. Эти ионы характеризуются такой скоростью распада, что часть из них распадается по пути от ионного источника к детектору. Таким образом, в момент пролета этих ионов в масс-спектрометре изменяется их масса, вследствие чего условие, передаваемое уравнением (5.5.1), не выполняется. Подобные ионы регистрируются в спектре в виде метастабильных пиков, которые в отличие от обычных пиков имеют вид полос и очень часто наблюдаются в диапазоне нескольких атомных еди- [c.291]

    Предел обнаружения масс-спектрометра имеет такой же порядок, как и других применяемых в газовой хроматографии детекторов (до г/с), но в специальных режимах работы он может быть значительно понижен (до г/с) . Линейный диапазон масс-спектрометра как детектора зависит от способа ионизации и может достигать 2—4 порядков, что меньше, чем у ионизационно-пламенного детектора, но значительно больше, чем, например, у детектора электронного захвата. В некоторых случаях хромато-масс-спектрометры после предварительной градуировки одним из известных способов используют для количественных определений, но основное их назначение — качественный анализ неизвестных компонентов анализируемых образцов, Главная сложность количественного анализа на таких приборах — необходимость контроля и обеспечения постоянства гораздо большего числа рабочих параметров, чем на обычных хроматографах. На практике для получения количественных данных значительно проще провести параллельный анализ однотипного образца на хроматографе с ионизационно-пламенным детектором. [c.199]

    Поскольку ИК-обЛучение не вызывает деструкции вещества, элюат из кюветы-световода может быть направлен на дополнительное детектирование (ионизационно-пламенный детектор или масс-спектрометр). [c.209]

    В настоящее время широко [гснользуются также капиллярные колонки. Капиллярные трубки изготовлены из металла нли стекла. Внутренний диаметр капиллярных колонок колеблется в пределах 0,25—0,5 мм, длина от 10 до 200 м. В истинных капиллярных колонках неподвижная фаза находится в виде тонкой пленки на внутренних стенках и не заполняет всего объема. Капиллярные колонки имеют эффективность до 1000 теоретических тарелок на метр длины и в комбииацгиг с масс-спектрометрами позволяют анализировать сложные и многокомпонентные смеси. Нижний температурный предел работы всех колонок ограничивается температурой плавления жидкой фазы. Верхний температурный предел работы колонок в основном ограничивается летучестью жидкой фазы и чувствительностью детектора. Вновь приготовленную колонку обычно необходимо выдержать в течение суток в потоке газа-носителя при температуре, которая на 25° выше максимальной рабочей температуры стационарной фазы. [c.299]


    Главным требованием, предъявляемым к хромассу, является большая скорость съемки полного масс-спектра во всем диапазоне возможных масс до подхода вещества из следующего хроматографического пика или даже во время прохождения пика. В последнем случае, если пики двух веществ не разделены, снимая последовательно масс-спектры в начале, середине и конце хроматографического пика, можно приблизительно восстановить масс-спектры индивидуальных соединений. Поскольку при использовании сепараторов возможна частичная потеря компонентов с нарушением концентрационных соотношений, то для количественных определений желательно иметь помимо масс-спектрометра детектор другого типа. [c.248]

    Для обнаружения анализируемых компонентов в ВЭЖХ широко применяются устройства, работа которых основана на измерении поглощения в ультрафиолетовой области, флуоресценции или электрохимических характеристик. Возможно также сочетание жидкостного хроматографа с масс-спектрометром (39). Несмотря на то, что наиболее универсальным детектором является рефрактометр, его невысокая чувствительность и селективность, несовместимость с градиентами давления привели [c.272]

    Эксперименты со скрещенными пучками дают наиб, полную информацию о взаимод. между частицами, в т. ч. о хнм. р-циях, позволяя проследить траектории рассеянных частнц нли продуктов р-ции. Этого достигают тем, что сначала определяют скорости, углы взаимод. и др. исходные состояния пучков реагентов, а затем измеряют распределение рассеянных частиц, в т. ч. продуктов, по скоростям, внутр. степеням свободы, углам рассеяния. Установка со схрещен-ньп (и пучками состоит из неск. вакуумных камер с дифференц. откачкой, источников мол. пучков (однн из к-рых, как правило, газодинамический), мех. модуляторов пучков, детектора, разл. селекторов для выделения частнц с энергиями в заданном интервале значений, систем управления экспериментом, сбора и обработки данных. Распределения рассеянных частиц по скоростям обычно определяют времяпролет-ным методо.м. при к-ром измеряют времена прохождения частицами известного расстояния. Применяют разл. детекторы масс-спектрометры с ионизацией электронным ударом или лазерным излучением с поверхностной ионизацией манометрич. микровесы полупроводниковые лазерные (основанные на лазерно-индуцир. флуоресценции). [c.123]

    Сигма 1, хромато-масс-спектрометр МХ-1307М. Чувствительность определения зависит от вида соединения и типа детектора и составляет величину 0,1—3 мг/м . [c.27]

    Следует заметить, что во многом успех газохроматофафического определения суперэкотоксикантов зависит от применяемых детекторов. В частности, надежное газохроматофафическое определение ПАУ в природных матрицах на уровне следовых количеств возможно только с применением масс-селективного детектора, который представляет собой настольную модель квадрупольного масс-спектрометра. В табл. 7.6 приведены основные характеристики детекторов, используемых в газовой хроматофафии. Наиболее важными из них являются минимально детектируемое количество, диапазон чувствительности и селективность. [c.260]

    Приведенные данные показьшают, что применение масс-спектрометрии в сочетании с хроматофафией дает дополнительные возможности при определении органических суперэкотоксикантов в объектах окружающей среды Благодаря тому, что масс-спектрометр является высокоселективным детектором, разрешение пиков на масс-хроматофаммах, как правшю, заметно лучше, чем на обычных хроматофамма . Кроме того, по масс-хроматофаммам можно получить ответ о природе анализируемых соединений [>го необходимо при идентификации зафязнителей, присутствующих в ульфамалых количествах [c.267]

    Для установления строения индивидуальных компонентов исследуемых образцов без их препаративного выделения необходимо применять наиболее информативные детекторы, действие которых основано на важнейших методах физико-химического исследования органических соединений масс-спектрометрии, ИК-и Я Р-спектроекопни 162 1. [c.198]

    Регулируемая селективность масс-спектрометра как хроматографического детектора означает следующее параллельно с хроматограммой анализируемого образца по полному ионному току могут быть записаны одна или несколько хроматограмм по заранее выбранным значениям miz (так. называемые масс-фрагменто-граммы) . Следует подчеркнуть, что предел обнаружения в этом методе примерно в 100 раз меньше, чем по полному ионному току, что обусловлено снижением уровня шумов. Такой прием дает возможность даже в сложных смесях легко обнаруживать присутствие веществ, дающих в масс-спектрах сигналы с характеристичными массовыми числами, и широко применяется при анализе следов галогенсодержащих соединений в воздухе (на фоне относительно большого количества углеводородов), аминокислот в виде их летучих производных, метаболитов лекарственных препаратов и т. д. Для повышения чувствительности масс-фрагментограммы, как правило, записывают по массовым числам максимальных сигналов в спектрах анализируемых веществ. [c.201]

    Идентификацию продуктов органического и биокаталитического синтеза осуществляли методами хроматомасс-спектрометрии на хроматографе "Hewlett Pa kard" с масс-селективным детектором G 1334 и [c.85]

    ГИБРИДНЫЕ МЕТОДЫ АНАЛИЗА, основаны на сочета-НИИ методов разделения смесей и определения (обнаружения) компонентов. Часто реализуются в одном аналит. приборе. К Г. м. а. относятся, напр., газовая хроматография, жидкостная хроматография, ионная хроматография, хро-мато-масс-спектрометрия, в к-рых разделенные на хроматографич. колонке компоненты определяют с помощью разл. детекторов, а также методы, включающие экстракционное разделение ионов металлов с последующим анализом экстракта физ.-хим. или физ. методами-атомно-аб-сорбциоиным, полярографич., фотометрич. и другими. [c.546]

    Непрерывный анализ ставит высокие требования к детектору масс-спектрометра, если не применить предложенного Хеннебергом (1961) метода фиксированной массы. Чувствительность, точность и скорость измерения связаны друг с другом и ограничивают друг друга. Разрешающую способность и скорость регистрации подбирают в зависимости от того, сколько вещества имеется для анализа, какова скорость изменения концентрации в пробе и какова ширина измеряемого интервала масс. Использованный в работе Брунне, Енкеля и Кроненбергера (1962) масс-спектрометр Атлас-СН4 позволяет изменять эти параметры в широком интервале запись производят посредством компенсационного самописца, самописца со световой точкой или осциллографической трубки. Последняя, например, дает максимально 10 спектров за 1 сек в области масс от 40 до 120, а самописец со световой точкой позволяет снять в 1 сек большое число спектров с различной чувствительностью. Охватываемая область концентраций составляет восемь порядков. [c.268]

    Для качественного анализа, проводимого на капиллярных колонках, наиболее пригодна комбинация капиллярной хроматографии с масс-спектро-метрией. В качестве детектора используют масс-спектрометр, фиксирующий массы молекул непрерывно поступающего вещества. В соответствии с аналитической проблемой селективность этого детектора можно изменить при помощи выбора определенного массового числа (Хеннеберг и Шомбург, [c.356]

    После сепаратора в-во поступает в ионный источник масс-спектрометра. Ионизация осуществляется ускоренными электронами, неоднородным электрич. полем, ионами газа-реагента и др. Число образующихся при этом ионов пропорционально кол-ву поступаюп(его в-ва. С помощью установленного в масс-спектрометре датчика, реагирующего на изменение полного ионного тока, происходит запись хроматограммы. Т. о., масс-спектрометр служит детектором хроматографа. Одновременно с записью хроматограммы в любой точке хроматографич. пика м. б. зарегистрирован масс-спектр, к-рый позволяет устанавливать строение соответствующего компонента. [c.669]

    Принципиально масс-спектрометр состоит из четырех блоков системы напуска, ионного источника, системы магнитной фокусировки и детектора (рис. 1). В системе напуска образец анализируемого вещества испаряют в вакууме. Образовавшиеся пары поступают в ионный источник, где подвергаются бомбардировке пучком ускоренных электронов (энергия обычно порядка десятков элек-тронвольт). Энергия облучения расходуется на выбивание электронов из молекул анализируемого вещества — последние превращаются в положительно заряженные ион-радикалы. Такие частицы высоко реакционноспособны и нестойки. Тут же в ионизационной камере они претерпевают распад на заряженные и незаряженные осколки (отсюда название метода осколочная масс-спектрометрия ). Вся ионизационная камера находится под высоким по- [c.66]

    Флюидиая К. X. основана на использовании в качестве подвижной фазы СО2, N30 и др. газов, сжатых до сверхкритич. состояния (флюиды), и полых капиллярных колонок с внутр. диаметром 25-100 мкм. Растворяющая способность флюида сопоставима с растворяющей способностью подвижной фазы в жидкостной хроматографии, а значение коэф. диффузии растворенных во флюиде в-в на 2-3 порядка выше, чем в жидкостной хроматографии. Это св-во флюида в сочетании с относительно низкой его вязкостью позволяет увеличить эффективность разделения. При разделении многокомпонентных смесей в-в коэф. распределения и время элюирования регулируют программированием плотности флюида. Для детектирования применяют универсальный к орг. в-вам пламенно-ионизац. детектор, оптич. спектральный детектор или масс-спектрометр. [c.309]

    Анализируемое в-во (обычно в р-ре) вводится в испаритель хроматофафа, вде мгновенно испаряется, а пары в смеси с газом-носителем под давлением поступают в колонку. Здесь происходит разделение смеси, и каждый компонент в токе газа-носителя по мере элюирования из колонки поступает в мол. сепаратор. В сепараторе газ-носитель в осн. удаляется и обогащенный орг. в-вом газовый поток поступает в ионный источник масс-спектрометра, где молекулы ионизируются. Число образующихся при этом ионов пропорционально кол-ву поступающего в-ва. С помощью установленного в масс-спектрометре датчика, реагирующего на изменение полного ионного тока, записывают хроматофаммы. Т. обр. масс-спектрометр можно рассматривать как универсальный детектор к хроматофафу. Одновременно с записью хроматофаммы в любой ее точке, обычно на верщине хроматофафич. пика, м. б. зарегистрирован масс-спектр, позволяющий установить строение в-ва. [c.319]


Смотреть страницы где упоминается термин Масс-спектрометр детектор: [c.601]    [c.41]    [c.135]    [c.316]    [c.180]    [c.263]    [c.265]    [c.34]    [c.282]    [c.286]    [c.288]    [c.298]    [c.199]    [c.200]    [c.270]    [c.467]    [c.659]   
Масс-спектрометрия в органической химии (1972) -- [ c.34 ]




ПОИСК





Смотрите так же термины и статьи:

Масс-спектрометр

Масс-спектрометрия

Масс-спектрометрия масс-спектрометры



© 2025 chem21.info Реклама на сайте