Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аналитическая химия развитие

    Аналитическая химия — наука о методах определения состава веществ. Предмет ее — решение общих проблем теории химического анализа, совершенствование существующих и разработка новых, более быстрых и точных методов анализа. Задача аналитической химии — развитие теории химических и физико-химических методов анализа, процессов и операций в научном исследовании. [c.5]


    Ионометрия - современное прогрессивное направление в развитии потенциометрического метода анализа и исследования. Основная задача ионометрии заключается в разработке, изучении и примене1у1и разнообразных ионоселективных электродов, обратимых и достаточно селективных к различным катионам и анионам. К ионометрии относятся давно известный метод -рН-метрия и новые методы прямой потенциометрии - катионо-метрия и анионометрия. Ионометрия находит широкое применение в науке и технике в технологии для автоматического конт роля производственных процессов, при анализе и контроле чистоты водного пространства и окружающей атмосферы, в аналитической химии, биологии, геологии, почвоведении, медицине, океанологии и т.д. С помощью метода ионометрии успешно решаются задачи анализа и исследования применительно к сложным многокомпонентным системам. [c.38]

    ОСНОВНЫЕ ЭТАПЫ РАЗВИТИЯ аналитической ХИМИИ [c.8]

    ОСНОВНЫЕ ЭТАПЫ РАЗВИТИЯ И ЗНАЧЕНИЕ АНАЛИТИЧЕСКОЙ ХИМИИ [c.5]

    Среди современных методов аналитической химии, развитие которых напрямую связано с решением проблем биологии и медицины, особый интерес в последние годы вызывает капиллярный зонный электрофорез. Само явление электрофореза было открыто 580 [c.580]

    Технический прогресс и достижения науки в XX в. способствовали широкому развитию аналитической химии. Развитие металлургии, химической технологии, медицины, физики, геохимии и других наук, а также техники ставит много новых важных вопросов перед аналитической химией кроме того, развитие техники и смежных областей науки дает химикам-аналитикам новые теоретические данные и новые средства для решения различных задач. [c.13]

    Кафедры аналитической химии многих вузов, по просьбе авторов, сообщили свои пожелания по указанным вопросам. Общее мнение сводится к тому, что в учебнике должны найти отражение современные направления развития аналитической химии. Многие кафедры в некоторой степени разрешают на практике трудную проблему модернизации преподавания общего курса количественного анализа без существенного увеличения объема курса. В ряде вузов дается характеристика не только давно известных и хорошо зарекомендовавших себя методов, как колориметрия, полярография и др., но и сравнительно новых методов, как комплексонометрия, кулонометрия, кинетические методы, высокочастотное титрование, радиохимические методы и др. Во многих вузах введены задачи по неводному титрованию, потенциометрическому определению ванадия, колориметрическому определению меди, железа, титана. [c.8]


    Разрыв между аналитической химией, которую студент постигает как учебную дисциплину в стенах университета, и аналитической химией научных журналов или современной лаборатории должен быть небольшим. Что определяет лицо современной аналитической химии как науки Интенсивное развитие атомно-абсорбционных методов. Революция в анализе органических веществ, совершенная хроматографическими методами, особенно газовой хроматографией. Широкое использование рентгеновских и ядерно-физических методов. Интерес к ионометрии, разработке и использованию ионоселективных электродов. Внедрение электронно-вычислительных машин и вообще математизация аналитической химии. Развитие работ в области органических аналитических реагентов для целей разделения и определения металлов. Конечно, список быстро развивающихся направлений этим не исчерпывается, но почти все главные названы. И, к сожалению, многие указанные методы и направления не изучаются на кафедрах аналитической химии. Выпускник может растеряться, придя в исследовательскую лабораторию, где обычным прибором является, например, рентгенофлуоресцентный квантометр или газовый хроматограф. [c.219]

    Особое внимание химики-аналитики уделяют теоретическим основам аналитической химии, развитие которых идет по пути накопления числовых показателей, ха- [c.310]

    Задача аналитической химии как научной дисциплины — получение информации об исследуемых вещественных системах, а им(шно о природе составных частей (качественный анализ), о числе составных частей (количественный анализ), о пространственном строении и распределении составных частей (структурный анализ), об изменении во времени перечисленных выше характеристик (анализ процессов). Кроме того, аналитическая химия включает развитие и оценку методов анализа, необходимых для получения указанной информации. [c.430]

    В области органического анализа простой, быстрый и удобный метод хроматографии в тонком слое сорбента применяется в течение последних трех десятилетий широко и успешно. В неорганической и аналитической химии развитие его несколько задержалось, и лишь за последние 9—10 лет наблюдается интенсивный рост числа публикаций по неорганической ТСХ, применяющейся как микрометод разделения и концентрирования веществ. [c.6]

    Развитие аналитической химии позволило получить информацию об углеводородном составе нефтей, что повлекло за собой разработку новых классификационных систем. [c.14]

    Сыр кин Я. К., Квантовая неорганическая химия, сб. Развитие общей, неорганической и аналитической химии в СССР. Серия Советская наука и техника за 50 лет , Изд. Наука , 1967. [c.609]

    К середине XIX в.— периода завершения второго химико-аналитического этапа развития химии — было открыто уже более 60 элементов, у большинства которых были изучены физические и химические свойства (некоторые из элементов к этому времени не были выделены еще в чистом виде). [c.19]

    Создателем хроматографического метода анализа является русский ученый М. С. Цвет, который в 1903 г. разработал хроматографический метод разделения компонентов красящего вещества зеленых листьев растений — хлорофилла. В настоящее время хроматографический анализ получил широкое распространение и развитие и используется не только в аналитической химии, но и в других областях науки и техники. [c.319]

    В современной металлургии используется для получения различных сплавов больше половины элементов периодической системы отдельные сплавы содержат более десяти компонентов, причем сплав может иметь необходимые свойства только при определенном процентном содержании этих компонентов. Ко многим материалам, например, к германию и кремнию для полупроводниковых изделий, урану, жаростойки.м металлам и сплавам техника предъявляет очень высокие требования в отношении чистоты, т. е. отсутствия следов примесей. Необходимость сложных исследований таких материалов стимулировала развитие теории и методов аналитической химии. [c.10]

    Большое влияние на развитие аналитической химии в середине XIX в. оказали работы немецкого ученого К. Р. Фрезениуса. Он разработал многие методы анализа, применяемые и в настоящее время основал в 1862 г. [c.11]

    Большинство прежних руководств по химическому анализу представляли собой главным образом сборники эмпирических прописей, без общих положений, без рассмотрения связи и различия между химическими свойствами элементов. На новом этапе развития химии появилась необходимость в ином руководстве, где аналитическая химия была бы тесно связана с общей химией. Такое руководство по качественному и количественному анализу — Аналитическая химия — составил в 1871 г. [c.12]


    Настоящий учебник составлен в соответствии с программой по аналитической химии для химико-технологических вузов и содержит изложение главным образом теоретических основ этой науки с учетом современных тенденций развития. [c.3]

    ФИЗИЧЕСКАЯ ХИМИЯ — важная отрасль химической науки, которая использует все достижения физики и математики для исследования, объяснения, установления закономерностей химических явлений и свойств вещества. Ф. х. включает учение о строении вещества, химическую термодинамику и химическую кинетику, электрохимию и коллоидную химию, учение о катализе, растворах, фотохимию и радиационную химию. Значение Ф. х. как науки непрерывно возрастает, так как она является теоретической основой для исследований как в отраслях неорганической, органической и аналитической химии, так и в разработке новых важнейших химикотехнологических процессов, путей управления существующими технологическими процессами и их усовершенствованием. Без использования достижений Ф. X. невозможно дальнейшее развитие всех других отраслей химии — неор- [c.262]

    Существенное значение имеют достижения аналитической химии в развитии отраслей промышленности и народного хозяйства, связанных с новой техникой — применением атомной энергии, развитием ракетостроения и промышленности жаропрочных сплавов, электроникой и промышленностью полупроводниковых материалов. Аналитическая химия не только обеспечила эти области эффективными методами анализа, но и послужила основой разработки многих новых технологических процессов. [c.8]

    Развитие этих отраслей промышленности, науки и народного хозяйства страны потребовало от аналитической химии новых совершенных методов анализа. Потребовались количественные определения содержания примесей на уровне 10 ...10 % и ниже. Оказалось, например, что содержание так называемых запрещенных примесей (Сс1, РЬ и др.) в материалах ракетной техники должно быть не выше 10 %, содержание гафния в цирконии, используемом в качестве конструкционного материала в атомной технике, должно быть меньше 0,01%, а в материалах полупроводниковой техники примеси должны составлять не более 10 "%. Известно, что полупроводниковые свойства германия обнаружились только после того, как были получены образцы этого элемента высокой степени чистоты. Цирконий был вначале забракован в качестве конструкционного материала в атомной промышленности на том основании, что сам быстро становился радиоактивным, хотя по теоретическим расчетам этого не должно было быть. Позднее выяснилось, что радиоактивным становился не цирконий, а обычный спутник циркония — гафний. В настоящее время цирконий научились получать без примеси гафния, и он эффективно используется в атомной промышленности. [c.12]

    Крупным вкладом В. М. Севергина в развитие аналитической химии является выпуск им нескольких руководств по химическому анализу, в особенности фундаментального труда Пробирное искусство или руководство к химическому испытанию металлических руд и других ископаемых тел (1801). [c.9]

    Образование коллоидных растворов может происходить при осаждении и растворении осадков и в ходе некоторых других химико-аналитических процессов. В коллоидных системах растворенное вещество находится в виде частиц размером см, что намного превышает размеры обычных ионов и молекул в истинном растворе, но значительно меньше, чем размеры частиц, выпадающих в осадок. В связи с такими размерами частиц вещество в коллоидном состоянии имеет развитую поверхность, способную адсорбировать большое число ионов, и адсорбированные ионы в значительной степени определяют свойства коллоидных растворов и их особенности. С химико-аналитической точки зрения важно отметить, что частицы коллоидного раствора проходят через обычные фильтры, применяемые в аналитической химии, и не выпадают в осадок даже при длительном хранении. В проходящем свете коллоидные растворы прозрачны и лишь при боковом освещении можно заметить, что они мутные. Это явление называют эффектом Тиндаля. Обнаружение эффекта Тиндаля является обычным экспериментальным доказательством существования коллоидного раствора. [c.98]

    Огромное влияние на развитие химии и других наук оказало открытие в 1869 г. Д. И. Менделеевым (1834—1907) периодического закона, а Основы химии Д. И. Менделеева стали основой и при изучении аналитической химии. Больщое значение имело также создание А. М. Бутлеровым теории строения органических соединений. Значительное влияние на формирование аналитической химии и ее преподавание оказала вышедшая в 1871 г. Аналитическая химия А. А. Меншуткина (1842—1907), выдержавшая 16 изданий в нашей стране и переведенная на немецкий и английский языки. [c.10]

    В 1868 г. по инициативе Д. И. Менделеева и Н. А. Меншуткина при Петербургском университете было учреждено Русское химическое общество, которое с 1869 г. стало издавать свой журнал. Создание научного химического общества и выпуск журнала благотворно сказались на развитии отечественной химии и аналитической химии в частности. [c.10]

    Высокими темпами стала развиваться аналитическая химия в нашей стране после Великой Октябрьской социалистической революции. Интенсивная работа по изучению природных ресурсов страны, развитие горного дела, металлургии, машиностроения, химии и других важных отраслей промышленности предъявили к аналитической химии обширные и многообразные требования. Возникла, в частности, острая необходимость в стандартизации методов анализа и разработке экспрессных методик. Эти задачи были успешно решены. [c.11]

    К середине XVIII века химическая наука в России находилась уже на довольно высоком уровне. Ее развитие связано с именем гениального русского ученого М. В. Ломоносова, который внес большой вклад в русскую науку и которого по праву называют русским ученым - энциклопедистом. Деятельность М. В. Ломоносова связана также и с развитием отечественной медицины, химии и фармации. Он положил начало количественному анализу в аналитической химии, развитию физической химии, указал на значение математики и физики для химических исследований, открыл закон сохранения массы, создал кинетическую теорию тепла и т. д. В своей работе Слово о пользе химии М. Б. Ломоносов проводит мысль о ведущей роли химии для развития медицины и фармации. М. В. Ломоносов был создателем первой в России научной химической лаборатории (1748), в которой ои проводил экспериментальные работы и обучал студентов химическому эксперименту. [c.8]

    Нельзя сказать, чтобы проблемам определения суперэкотоксикантов ранее не уделялось должного внимания. Достаточно вспомнить, что такой анализ играет важную роль при решении задач санитарии и охраны труда в атомной и химической промьппленности, в контроле качества пищевых продуктов и фармацевтических препаратов, чему посвящена обширная литература [5-11]. Однако большинство работ этого плана по своей сути мало отличается от обычного определения примесей на уровне микро- и ультрамикроконцентраций. Качественные изменения произошли при решении задач экологии, медицины и других областей человеческой деятельности. Именно тогда на основе достижений физических и физикохимических методов анализа, прежде всего хроматографии и масс-спектрометрии, сформировалась самостоятельная область аналитической химрга - анализ суперэкотоксикантов. В настоящее время аналитическая химия суперэкотоксикантов имеет свои разработки по пробоотбору, выделению и разделению анализируемых компонентов, методам детектирования следовых количеств загрязнителей и др. Развитие этой области тем или иным образом оказьшает воздействие и на другие дисциплины, вызывающие в настоящее время повьппенный интерес со стороны широкой общественности, в частности на биохимию, клиническую химию и медицину, для которых проблема определения токсичных веществ на следовом уровне является весьма актуальной. [c.152]

    Методы очистки могут быть физическими либо химическими. Физические методы включают дистилляцию, сублимацию, испарение летучих примесей, рекристаллизацию из расплава, фракционную кристаллизацию, электролиз жидкостей или твердых веществ, жидкостную экстракцию, хроматографию, ионный обмен. Важнейшим из них и наиболее общим является предложенный Пфанном метод зонной плавки—частный метод перекристаллизации из расплава (далее мы обсудим его). Все остальные методы полезны в тех случаях, когда зонная плавка неэффективна, или же они используются в сочетании с методом зонной плавки, а область открывает простор для проявления изобретательности, здесь можно применить также такие современные методы, как ионный обмен и хроматография, не получившие пока широкого распространения в этой области. Например, проблема получения сверхчистого никеля с соотношением N1 Ре или N1 Со, равным 10 1, давно ждала своего решения. Вследствие сходства физико-химических свойств всех трех металлов зонная плавка была неэффективной, хотя этим методом удается хорошо очистить никель от всех других примесей. При такой концентрации железо и кобальт препятствуют исследованию энергетических зон никеля по причинам, аналогичным указанным в разд. 4.1 (так как примесные атомы действуют как центры рассеяния электронов). Однако в аналитической химии развиты методы ионообменного разделения железа, кобальта и никеля. Если железо и кобальт отделить от никеля этим способом в водном растворе соли, а затем никель электролитически осадить и подвергнуть зонной плавке, с тем чтобы отделить от других элементов, то можно получить металл высокой степени чистоты с содержанием примесей железа и кобальта в десять —сто раз меньшим, чем при любых других доступных методах очистки. [c.212]

    Леа Александрович Чугаев принадлежит к числу наиболее выдающихся советских химиков. Родился в Москве, а 1895 г, окончил Московский университет. В 1904 — 1908 г. — профессор Московского высшего технического училища, в 1908 —1922 г. — профессор неорганической химии Петербургского университета и одновременно (с 1909 г.) — профессор органической химии Петербургского технологического института. Занимался изуче нием химии комплексных соединений переходных металлов, в особенности метал- лов платиновой группы Открыл много новых комплексных соединений, важных в теоретической и практическом отношениях. Чугаев впервые обратил внимание иа особую устойчивость 5- и 6-члениых циклов во внутренней сфере комплексных соединеинй и охарактеризовал кислотно-основные свойства аммиакатов платины (IV). Он был одннм нз основоположников применения органических реагентов в аналитической химии. Много внимания уделял организации и развитию промышленности по добыче и переработке платины и платиновых металлов I СССР. Созда./ большую отечественную школу химикоз-неоргаников, работающих а области изучения химии комплексных соединений, [c.588]

    С развитием научно-технического прогресса изучение современной аналитической химии на рештенофлуоресцентном приборе даст толчок к творческой деятельности студентов и позволит легче ориентироваться при выборе м да анализа объекта. [c.56]

    Как известно, каждая наука, в том числе и аналитическая химия, имеет внутреннюю логику своего развития. Вместе с тем, на нее влияют и внешние факторы, прежде всего потребности практики, которые мохуг вызвать появление новых задач. Экологические и медико-биологические [c.5]

    Во второй половине XIX в. и в XX в. продолжалось интенсивное развитие теории и методов аналитической химии. Установление и экспериментальная проверка закона действия масс, развитие теории электролитической диссоциации и другие достижения науки послужили значительным толчком для разработки теоретических основ процессов осаждения и растворения, кислотно-основных равновесий, равновесий комплек- [c.12]

    В процессе развития аналитической химии была разработана определенная техника качественного анализа. Каждый аккуратно работающий аналитик иопользует эту технику, так как она гарантирует получение надежных результатов наиболее быстрым способом. Однако это не означает, что нужно слепо вошроизводить все прописи анализа и процессы) разделения, Каждую операцию нужно хорошо продумать и делать необходимые выводы из результатов опыто1В. Качественный анализ включает следующие этапы а) отбор пробы б) описание внешнего вида пробы в) предварительные испытания (мюкрым или сухим путем) г) растворение пробы д) обнаружение анионов е) обнаружение катионов ж) анализ нерас- творенного остатка. [c.34]

    Важной задачей аналитической химии является нахождение новых методов установления конца титрования, поскольку с этим связано расширение типов реакций, применяемых в объемном анализе. Тенденция развития направлена в сторону физических методов индикации, которые в отличие от химических не вносят изменений в аналитическую систему и тем самым обусловливают принципиально большую точность индикации. Кроме того, это способствует автоматизации титриметрических определений, что имеет большое значение для химической промышленности. Однако наиболее пригодны для автоматизации методы, не связанные с измерением объемов, например метод меченых атомов, измерение УФ- и ИК-поглощения, УФ- и рент-геноэмиссионный спектральный анализ. [c.120]

    С задачами аналитической химии следовых количеств сталкиваются в следующих случаях когда пробы для анализа достаточно, но в ней содержатся небольшие количества определяемых компонентов, и когда анализируют пробы,, содержащие сравнительно высокие концентрации определяемых компонентов, но количество пробы ограничено из-за ее ценности или малодоступности. Задачи первого рода встречаются значительно чаще. Развитие аналитической химии в обоих направлениях, т. е. решение указанных задач определения малых содержаний компонентов или анализа небольших проб, чем бы ни вызывалась постановка подобного рода задач — практическими нуждами или особенностями метода, в котором по необходимости имеют дело с пробагАи небольшого объема (например, в искровой масс-спектроскопии), — представляет важную проблему. Еще одна особенность анализа следовых количеств состоит в том, что, чем меньше содержание определяемого компонента в пробе, тем в большей степени проявляется негомогенность его распределения в твердом материале. Поэтому определение следовых количеств элементов в небольших пробах характеризуется экстремально большими величинами случайного разброса получаемых результатов. [c.406]

    Развитие промышленности и различных производств к середине XVII в. потребовало новых методов анализа и исследования, поскольку пробирный анализ уже не мог удовлетворить потребностей химического и многих других производств. К этому времени к середине XVII в. и относят обычно зарождение аналитической химии и формирование самой химии как науки. Определение состава руд, минералов и других веществ вызывало очень большой интерес, и химический анализ становится в это время основным методом исследования в химической науке. Р. Бойль (1627—1691) разработал общие понятия о химическом анализе. Он заложил основы современного качественного анализа мокрым путем, т. е. путем проведения реакций в растворе, привел в систему известные в то время качественные реакции и предложил несколько новых (на аммиак, хлор и др.), применил лакмус для обнаружения кислот и щелочей и сделал другие важные )эткрытия. [c.8]

    Дальнейшее развитие теории аналитической химии связано с открытием Н. Н. Бекетовым (1827—1911) равновесия при химических реакциях и закона действующих масс К- М. Гульдбер-гом (1836—1902) и П. Вааге (1833—1900). Появление в 1887 г. теории электролитической диссоциации С. Аррениуса (1859— 1927) дало в руки химикам-аналитикам эффективный количественный метод управления химическими реакциями, а успехи химической термодинамики еще больше расширили эти возможности. Существенную роль сыграла монография В. Оствальда (1853—1932) Научные основы аналитической химии в элементарном изложении , вышедшая в 1894 г. Большое значение для развития окислительно-восстановительных методов аналитической химии имели работы Л. В. Писаржевского (1874—1938) и Н. А. Шилова (1872—1930) по электронной теории окислитель-но-восстановительных процессов. [c.11]

    Развитие аналитической химии в годы Великой Отечественной войны было связано главным образом с выполнением оборонных заданий. В это время Н. А. Тананаевым был разработан бес-стружковый метод анализа металлов и сплавов. По этому методу на анализируемый образец наносилась капля кислоты и получен- [c.11]


Смотреть страницы где упоминается термин Аналитическая химия развитие: [c.199]    [c.4]    [c.411]    [c.6]    [c.9]   
Курс аналитической химии Книга 1 1964 (1964) -- [ c.13 ]

Основы аналитической химии Книга 1 (1961) -- [ c.18 ]

Курс аналитической химии Издание 3 (1969) -- [ c.16 ]

Курс аналитической химии Издание 5 (1981) -- [ c.15 ]




ПОИСК





Смотрите так же термины и статьи:

Аналитическая химия



© 2025 chem21.info Реклама на сайте