Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Качественная идентификация

    Задачей группового анализа светлых дистиллятов является последовательное количественное определение углеводородов различных классов и групп. В продуктах прямой перегонки или получаемых в процессах, идущих под давлением водорода, присутствуют углеводороды трех классов алканы, цикланы и ароматические. В продуктах крекинга и пиролиза наряду с этими углеводородами могут содержаться и ненасыщенные соединения моноолефины, диолефины, циклоолефины и ароматические углеводороды с ненасыщенными боковыми цепями (типа стирола). При детализированном исследовании состава светлых нефтяных фракций задачей анализа уже является количественное определение или качественная идентификация (доказательство наличия) отдельных индивидуальных углеводородов или гетероатомных веществ, находящихся в исследуемом образце. [c.61]


    Качественная идентификация пиков достоверно может быть основана только на использовании добавок индивидуальных углеводородов. [c.337]

    Характер аналитических задач, решаемых с помощью важнейшего из этих методов — инструментальной или регистрационной колоночной ЖХ,— определяется природой используемых стационарной и подвижной фаз, а также принципом детектирования элюатов. Универсальные детекторы (рефрактометрический, диэлькометрический, транспортные и др. [109, 111, 2541) использовались для количественного анализа самых различных ГАС (аминов [255, 256], порфиринов [257], жирных кислот [258, 259], фенолов [260], сернистых соединений [261 ]) в условиях адсорбционной или координационной хроматографии, а также для определения молекулярно-массового распределения высокомолекулярных веществ [69, 109, 262, 2631 при эксклюзионном фракционировании или разделении на адсорбентах с неполярной поверхностью, например, на графитирован-ных углях. Качественная идентификация элюируемых веществ в этих случаях проводится по заранее установленным параметрам удерживания стандартных соединений и при изучении смесей неизвестного состава часто затруднена из-за отсутствия таких стандартов. Групповая идентификация ГАС отдельных типов существенно облегчается при использовании специфических селективных детекторов спектрофотометрических (УФ или ИК), флю-орометрического [109, 111, 254 и др.], пламенно-эмиссионного [264], полярографического [111], электронозахватного [265] и др. [c.33]

    Достоинством Ж-спектрального метода является возможность качественной идентификации с целью обнаружения фуллеренов в исследуемом объекте. Это относится и к сложным смесям соединений, содержащих молекулы фуллеренов, т.е. для обнаружения фуллеренов при помощи данного метода не требуется предварительной очистки образца. Однако калибровка по Ж-спектрам зависит от особенностей конкретного прибора и условий приготовления образцов, что не позволяет получить аналитические зависимости в универсальной форме. Кроме того, существуют ограничения по концентрационной чувствительности данного метода [21], что создает дополнительные трудности для количественной идентификации фуллеренов в растворах в силу их низкой растворимости в органических растворителях. [c.14]

    Единственным надежным методом качественной идентификации соединений по хроматограммам, позволяющим избежать влияния всевозможных, в том числе и случайных, факторов на значение Rf, является метод свидетелей, когда вместе с пробой исследуемой смеси на стартовую линию в таких же количествах наносятся пробы индивидуальных веществ, соответствующих предполагаемым [c.148]


    Для качественной идентификации нитрата стрихнина характерно образование синих и фиолетовых продуктов окисления, возникающих прн внесении кристаллов бихромата калия в смесь концентрированной серной кислоты и стрихнина. Нитрат-ион определяют с помощью дифениламина и концентрированной серной кислоты (возникает синее кольцо на границе слоев жидкостей). При выпаривании досуха соли с дымящей азотной кислотой и смачивании остатка со спиртовым раствором едкого кали возникает красное окрашивание. [c.492]

    Анализ с помощью плоскостной (тонкослойной, бумажной) Ш X технически осуществляется почти так же, как и препаративное разделение, и отличается от последнего лишь малым объемом разделяемой пробы. Пятна разделенных ГАС выявляются сравнительно просто визуальным наблюдением их свечения при УФ облучении или окрашивании после опрыскивания слоя специфическими реагентами [267, 268]. В аналитических работах метод ТСХ чаще всего применяется для качественной идентификации отдельных групп соединений по характеру окрашивания (свечения) и параметрам удерживания (величинам И ). Получение точных количественных данных о составе разделяемой смеси с помощью ТСХ обычно связано с определенными трудностями. Некоторые перспективы улучшения разделения и облегчения количественного анализа кроются в применении уже упоминавшейся высокоэффективной круговой тонкослойной ЖХ и сканирующих устройств, фотометрирующих интенсивность спектров рассеяния или флуоресценции разделенных соединений [156]. [c.34]

    Основным критерием для качественной идентификации углеводородов при газохроматографическом анализе являются величины относительных времен удерживания или некоторой их модификации, называемой индексами Ковача . [c.338]

    Время удерживания и пропорциональный ему удерживаемый объем могут быть положены в основу качественной идентификации веществ в связи с тем, что эти величины определяются свойствами системы сорбат — сорбент. [c.114]

    Идентификация веществ на основе величин удерживания. Время удерживания и пропорциональный ему удерживаемый объем могут быть положены в основу качественной идентификации веществ в связи с тем, что эти величины определяются свойствами системы — сорбат—сорбент. [c.49]

    Качественная идентификация компонентов анализируемой смеси производится одним из следующих методов химическим микроанализом по характерным окраскам, появляющимся в результате взаимодействия анализируемого вещества с добавляемым реагентом, по спектрам поглощения в ультрафиолетовой или инфракрасной областях по спектрам флуоресценции по масс-спектрам или же по спектрам ядерного магнитного резонанса. [c.98]

    Индексы удерживания. В газо-жидкостной хроматографии при анализе соединений одного гомологического ряда для качественной идентификации отдельных компонентов смеси целесообразно пользоваться так называемыми индексами удерживания, введенными Ковачем. [c.190]

    Спектроскопия внутреннего отражения используется для качественной идентификации разнообразных полимерных образцов, например пленок, клеев, бумаги и бумажных покрытий, порошков, красок, волокон и пеноматериалов изучения мономолекулярных слоев изучения молекулярной ориентации (спектроскопия поляризованного внутреннего отражения) в полимерных пленках и вытянутых волокнах для определения оптических констант изучения загрязнения поверхностей при машинной переработке, руками человека или в контейнерах для исследования процессов окисления и/или разложения полимерных поверхностей изучения диффузии в полимерные материалы и выпотевания различных компонентов на поверхности количественного анализа полимерных материалов. [c.256]

    Необходимость в этом определении может встретиться при изучении новых органических веществ, обладающих свойствами индикаторов, и при качественной идентификации старых индикаторов кроме того, выполнение такой задачи дает возможность познакомиться с принципом буферного метода определения pH раствора и со свойствами индикаторов. Описанный ниже метод пригоден для характеристики индикаторов, интервал перехода которых находится в пределах pH между 3 и И. [c.346]

    Качественную идентификацию пиков компонентов бутан-бутиленовой фракции на обоих сорбентах произвести по литературным данным (табл. 8 и 9). [c.116]

    Работа 75. Качественная идентификация некоторых [c.237]

    Качественную идентификацию полимеров проводят по потенциалам полуволн продуктов деструкции (табл. 16.1). [c.238]

    Контроль за хроматографическим разделением анализируемых смесей, а также определение чистоты получаемых веществ после разделения или очистки можно осуществить тремя способами а) качественной идентификацией и количественным определением компонентов разделяемой смеси непосредственно в слое адсорбента без вымывания веществ из колонки (послойный метод анализа)  [c.51]


    К основным областям использования пиролитической газовой хроматографии относятся качественная идентификация полимеров путем сравнения пирограмм и масс-спектров исследуемых и известных полимеров, определение стереорегулярности полимеров, количественный анализ сополимеров и их структур, т. е. определение различий между статистическими и блок-сополимерами установление отличий полимерных смесей от истинных сополимеров, изучение термостойкости и деструкции полимеров, кинетики деструкции их, в том числе и термоокислительной деструкции, оценка остаточных количеств мономеров, растворителя, добавок и сорбированной воды в полимерах, идентификация растворителей, содержащихся в клеях и растворах покрытий, изучение процесса сшивания в полимерах. [c.200]

    Детекторы. В качестве детекторов в жидкостной хроматографии обычно используют высокочувствительные спектрофотометры, которые позволяют детектировать до 10 М соединений, поглощающих свет в УФ или видимой части спектра (190—800 нм). В последнее время начали применять высокоскоростные спектрофотометры, регистрирующие спектр в течение 0,01—0,05 с, что весьма ценно при качественной идентификации соединений. Для детектирования неокрашенных веществ можно использовать дифференциальный рефрактометр. При анализе соединений, способных к окислению или восстановлению, применяют электрохимический детектор, по сути представляющий собой миниатюрный полярограф. Используют также флуоресцентные детекторы и детекторы по электропроводности. Последние используют главным образом в ионообменной хроматографии. Для уменьшения размывания хроматографической зоны объемы измерительных ячеек в детекторах сведены к минимуму (I—10 мкл). [c.596]

    Методы анализа. Для качественной идентификации антибиотиков, в отличие от ряда групп природных соединений (алкалоиды, гликозиды), не существует общих, групповых реакций. В основу качественной характеристики антибиотиков положена индивидуальность их химической структуры, характер функциональных групп, в зависимости от которых антибиотики дают те или другие реакции, преимущественно цветные. [c.414]

    Особую роль играют стандартные образцы в газовой хроматографии. При анализе смесей сложного состава часто возникает не только задача количественной оценки содержания компонентов известной качественной природы, но и задача соотнесения пиков на хроматограммах исследуемого объекта и эталонов (стандартов) с целью качественной идентификации неизвестных, соединений. [c.55]

    Применение полярографии для качественной идентификации полимеров основано на изучении продуктов деструкции, образующихся при термическом воздействии на полимерные вещества [318] ИЛИ при их гидролитическом расщеплении. Многие из мономеров, а также другие продукты деструкции, получающиеся при сухой перегонке пластических масс, восстанавливаются на ртутном капающем электроде и характеризуются определенными значениями 1/2. На основании имеющихся данных по величинам 1/2 различных веществ (мономеров) можно идентифицировать такие полимеры, как полиметилметакрилат,. полистирол, полиизобутилен и др. Некоторые из продуктов деполимеризации непосредственно не восстанавливаются, но могут быть переведены в полярографически активные нитро-,. нитрозо- и галогенпроизводные. [c.209]

    Все инъекционные лекарства до стерилизации должны подвергаться химическому контролю на подлинность, а при наличии химика-аналитика в аптеке — и количественному анали-ау. Растворы новокаина, атропина сульфата, кальция хлорида, глюкозы и изотопический раствор натрия хлорида при любых обстоятельствах в обязательном порядке подлежат качественному (идентификация) и количественному анализу. [c.305]

    Совершенно понятно, что в случае положительно заряженных частиц (катионов) процесс восстановления на катоде связан с передачей электронов катиону с полной или частичной нейтрализацией его. Так как сродство к электрону у каждого вида ионов (или вообще частиц деполяризатора) различно (оно связано с энергетическими характеристиками электронных орбиталей данной частицы), то каждый из видов присутствующих в растворе катионов или других восстанавливающихся частиц взаимодействует с электронами при определенном минимальном отрицательном потенциале, что и обеспечивает возможность получения на полярограмме различных ступеней для различных катионов, т. е. их качественную идентификацию. [c.11]

    В последнее время предложена нами методика качественной идентификации различных видов полиамидов. В основу этой методики положена способность названных полимеров к кислотному гидролизу с образованием аминов или аминокислот и известная реакция конденсации аминосодержащих соединений с формальдегидом. Образующиеся в результате реакции шиффовы основания благодаря наличию в их молекулах группы —Ы = СН— способны восстанавливаться на ртутном капающем электроде и образовывать полярографические разли- [c.221]

    Методы основаны на индивидуальной степени сорбции каждого газа н пара, т. е. различной способности сорбироваться данным твердым или жидким сорбентом при всех прочнх (температура, давление, скорость газа и т. д.) равных условиях. Дискретная (при обычной хроматографической методике) проба ана-лпаируемой газовой смеси вводится в непрерывно протекающий вдоль слоя сорбента поток газа-носителя, инер1ного в отношении пробы и сорбента. В результате многократных сорбции и десорбции каждый компонент пробы перемешается вдоль слоя сорбента с определенной свойственной ему скоростью, отличной от скоростей других компонентов. Поэтому со слоя сорбента комио-пенты с.ходят раздельно (поочередно). Последовательность выхода отдельных компонентов смеси из хроматографической колонки, содержащей сорбент, характеризует их состав и способствует их качественной идентификации. На выходе колонки устанавливается газоанализатор (так называемый детектор), позволяющий получить развертку во времени (спектр) концентраций (количества) отдельных компонентов в пробе газовой смеси. Мерой этих количеств является интенсивность соответствуюи(их сигналов детектора, записываемых на диаграмме выходного прибора в виде отдельных пиков. Применяются главным образом детекторы по теплопроводности и различные типы ионизациопных детекторов. [c.610]

    С технической стороны выполнение первых двух условий не связано с какими-нибудь трудностями. Более сложным является получение эталонных углеводородов. Одвака нет никакой необходимости в синтезе всех индивидуальных углеводородов, которые могут присутствовать в анализируемых смесях, т. е. нет необходимости полного повторения того пути, который у же был пройден исследователями, разрабатывающими эти методы. Для газохроматографических целей с успехом можно использовать методы равновесной изомеризации или метиленирования, позволяющие легко и быстро получать смеси необходимых для анализа углеводородов. При использовании в качестве неподвижной фазы сквалана в целях большей достоверности желательно проведение газохроматографических анализов при нескольких температурах, отличающихся на 10—20° С. При этом полезно, для целей более надежной качественной идентификации, использовать следующие изменения в характере элюирования углеводородов различного строения. С повышением температуры уменьшаются времена удерживания алканов и, менее значительно, пятичленных цикланов. Углеводороды, имеющие групировку четвертичного атома углерода, начинают элюироваться позднее, чем их изомеры, не содержащие этой группировки. Само собой понятно, что понижение температуры приводит к противоположным эффектам. [c.337]

    Однако несдютря на попытку стандартизации методики определения относительных времен удерживания (учет времени удерживания несорбирующегося компонента — метана, использование в качестве реперов доступных углеводородов, близких по строению и телшературам кипения к анализируемым углеводородам, и пр.), автор заранее предупреждает об опасности использования отдельно взятых величин в целях качественной идентификации углеводородов на хроматограммах. Дело в том, что точность воспроизведения значений относительных времен удерживания несколько ниже точности разделения углеводородов, которая достигается в современных высокоэффективных капиллярных колонках. Поэтому, как уже указывалось, единственно надежным методом (причем необходимым, но, к сожалению, далеко не всегда достаточным) качественной идентификации пиков на хроматограммах является использование добавок индивидуальных углеводородов. [c.338]

    На основании имеющихся в литературе спектров индивидуальных ароматических углеводородов была проведена качественная идентификация ароматических углеводородов в узких фракциях арланской нефти. Максимумы 2665 и 2748 А (см. табл. 2) в электронном neKtpe поглощения фракции № 1 (160—170°С) соответствуют трехзамещенным алкилбензолам типа 1, 2, 4. Плечо 2620—2630 А соответствует дизамещенным алкилбензолам типа 1,2 1,3. [c.34]

    Цель работы. Провести термическую деполимеризацию полимеров и по потенциалам полуволн полярографичесмого восстановления продуктав деполимеризации провести качественную идентификацию полимеров. [c.237]

    Широкую область применения в газохроматографическом анализе нашла адсорбция определенных классов веш,еств на колонках с молекулярными ситами. Эти колонки помещают перед колонкой, служащей для соб-йтвенно газохроматографического разделения. Селективная адсорбция н-нарафннов была впервые применена для газохроматографического анализа высших углеводородов в работе Бреннера и Коутса (1958). Эти авторы установили, что и-парафины Сз — С при 60 — 180" количественно задерживаются на колонках длиной 30—100 см, заполненных молекулярными ситами 5А, а ароматические углеводороды, нафтены и разветвленные углеводороды выходят из этих колонок без изменения. Сравнение результатов анализа на обычной колонке и на предварительно включенных колонках с молекулярными ситами позволяет выполнить не только качественную идентификацию н-углеводородов, но и их количественное определение в смесях (например, в конечных продуктах реформинга). Общее содержанпе н-углеводородов и долю отдельных парафинов можно определить по разности величин площади пиков на обеих хроматограммах. [c.242]

    Бумажная и тонкослойная хроматография широко применяется как для качественной идентификации фенолов, фенолоспиртов и двухъядерных форполимеров, так и для приблизительной количественной оценки (погрешность 5—15% ) Раньше эти методы применяли для изучения кинетики реакций фенола с формальдегидом, для чего в одном направлении в качестве элюента пропускали смесь метанол — хлороформ, в другом — бензол — метнлэтилке-тон — днэтпламин. Проявляют хроматограммы, опрыскивая их диазотированным п-нитроанилином. В настоящее время эти задачи решают, используя автоматизированные хроматографы высокого давления. [c.99]

    Качественная идентификация газообразных продуктов термо- поликонденсации нефтяного пека,o y J e твлeннaя методом добавок, показала,что летучими продуктами являются Н2,СН ,С2Н0.Волее тяжелые углеводороды не обнаружены,это свидетельствует о том что боковые алифатические заместители в конденсированной ароматической системе очень короткие. [c.108]

    Со временем обратна1Г реакция Фаворского получила широкое признание у исследователей. Правда, в течение почти 40 лет она использовалась только для качественной идентификации в полученных спиртах структурного звена [c.139]

    ИК-спектроскопия сыграла большую роль в развитии промышленности полимеров. Известно, что метод широко используется на практике для идентификации пластиков. ИК-спектроскопия имеет важное значение в производстве красителей для качественной идентификации связующих, пигментов и растворителей, для оценки качества сырьевых материалов, дозировки компонент смол, в исследованиях по стабилизации и окислению, в задачах по определению качества продуктов. После некоторого физического разделения эластомеров на компоненты их можно идентифицировать на главные и второстепен- [c.200]

    В общем случае, когда отношение KUab порядка I, в спектре отсутствуют пары линий, расстояние между которыми составляет Jab или 8,-Для качественной идентификации девяти АВ2-лилий в спектре можно соблюдать следующие правила, выведенные на основании вычисленных значений энергии переходов. [c.300]

    На пористых полимерных сорбентах хорошо разделяются водород, окись углерода, метан, окислы азота и окислы углерода, газообразные соединения серы, фтор и хлоругле-водороды, цианистый водород, фосген, хлористый сульфурил [1]. Существенные различия в порядке элюирования газов на пористых полимерах по сравнению с порядком элюирования их на других сорбентах облегчают качественную идентификацию газов. Целый ряд разделений сложных смесей газов осуществлен на полимерных сорбентах [7—99]. При этом широко использовались составные колонки и программирование температуры. Во многих случаях удалось определять соединения на уровне микропримесей. Так, Саркар и Хазельден [37] разделили сложную смесь постоянных газов и легких углеводородов иа колонке с порапаком Q при температурах ниже комнатной (—40°, —60°С) и ири программировании температуры. [c.110]

    Потенциал полуволны Е1/2 (см. рис. 14) характеризует природу электроактивного вещества. Е1/2 сильно зависит от состава и pH раствора, но обычно мало зависит от концентрации диполяризатора и характеристики капилляра, вследствие чего он может служить критерием при качественной идентификации определяемого вещества. [c.156]

    Наконец, нельзя не указать на возможность использования для оценки кинетических характеристик веществ наблюдавшейся рядом исследователей (см., например, [70]) взаимосвязи между Е /2 и реакционной способностью веществ, которая фактически определяется скоростью протекания отдельных реакций с участием этих веществ. Формально эта зависимость может следовать из большого экспериментального материала по соответствию уравнениям Гаммета — Тафта значений логарифмов констант скоростей реакций, с одной стороны, и потенциалов полуволны (характеристики, принятой для качественной идентификации соединений в полярографии) этих же веществ — с другой. Исходя из этого следует ожидать, что А lg = onst А 1/2. Таким образом, по полярографическим данным (значениям 1/2) можно судить о реакционной способности соединений данного ряда. [c.182]


Смотреть страницы где упоминается термин Качественная идентификация: [c.122]    [c.11]    [c.146]    [c.101]    [c.289]    [c.347]    [c.291]    [c.8]    [c.222]   
Смотреть главы в:

Жидкостная хроматография нефтепродуктов -> Качественная идентификация

Жидкостная хроматография нефтепродуктов -> Качественная идентификация

Химия гидразина -> Качественная идентификация




ПОИСК







© 2025 chem21.info Реклама на сайте