Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пропилен, выделение из смеси

    Экстрактивную перегонку используют в лаборатории еще реже, чем азеотропную перегонку, и практически применяют лишь при разработке методик для промышленных процессов. Вместе с тем этот метод находит широкое применение в промышленности, например при выделении чистых компонентов из нефти и продуктов ее переработки. При помощи этого метода можно выделить пропан, пропилен, -бутан, изобутан, -пентан, изопентан, смесь гексанов, циклогексан, бензол, толуол и т. д. Детальное описание теории экстрактивной перегонки и соответствующей аппаратуры дано в книге Розенгарта [13], в статьях Карлсона [19], Здобникова и Вудфиль-да [10] и других авторов [46, 155]. [c.288]


    В работе [38] выполнено сравнение двух схем (рис. У-29) разделения смеси пропилен — пропан с выделением пропилена чистотой 99,5%, пригодного для использования в качестве мономера. Исходная пропилен-пропановая смесь содержит от 55 до 70% (мол.) пропилена. Сравнение проводили для установки производитель- [c.308]

    Практически цеолиты типа NaA не адсорбируют углеводороды метанового ряда, начиная с пропана. Это является важным фактором при извлечении непредельных углеводородов из газов нефтепереработки. Присутствующие в газе пропан и другие высокомолекулярные углеводороды загрязняют этилен и пропилен при выделении их в стационарном, движущемся или кипящем слое обычного адсорбента (активированного угля), применяемого при разделении углеводородных газов, и усложняют схему последующего фракционирования. Кроме того, коэффициент разделения активированного угля Кр, характеризующий селективность адсорбции углеводородов, на основании опытов Льюиса по паре этан — этилен составляет только 1,5. Вследствие этого на адсорбционных установках с использованием в качестве сорбента активированного угля, работающих периодически или непрерывно, невозможно достаточно четко отделить этилен от этана, и этан-этиленовая смесь должна направляться либо на дополнительную колонку с неорганическим адсорбентом или селективным растворителем, либо перерабатываться в присутствии этана. В обоих случаях это приводит к увеличению габаритов аппаратуры, дополнительным капиталовложениям и увеличению эксплуатационных расходов. [c.77]

    Нагревание серы до 150 °С в насыщенном углеводороде приводит к дегидрированию, сопровождающемуся выделением сероводорода [30, 31]. Для более эффективного осуществления дегидрирования смесь нагревают до 500—700 °С. Получающиеся при этом непредельные соединения вступают во взаимодействие с серой, образуя зачастую серусодержащие циклические соединения. Этан и пропан [32] или этилбензол [33] дают соответственно этилен, пропилен и стирол с хорошими выходами. Из циклогексана и серы при 300 °С образуется бензол [34]. Кроме упомянутых реакций серы с углеводородами известны многочисленные процессы дегидрирования углеводородов и их производных с участием полисульфидов и сульфидов. Например, при кипячении тетралина с полисульфидом образуется нафталин [35], из циклогеКсанола — фенол [36], а при облучении светом смеси дисульфида с тетралином или циклогексаном получаются соответственно нафталин и бензол [37]. Однако при кипячении серы с н-бутаном в качестве основного продукта образуется тиофен [32]. [c.37]

    В процессе разработки промышленного метода производства хлористого аллила высокотемпературным хлорированием пропилена пришлось столкнуться с многими трудностями технического характера. Так, например, хлорирование следует проводить очень быстро. Если смешивать реагирующие вещества на холоду и затем нагревать смесь, то, прежде чем достигается рабочая температура, при которой начинается реакция замещения, происходит присоединение хлора. Если пропилен и хлор смешивать в горячем состоянии, могут происходить вспышки и выделение сажи. Кроме того, существует верхний предел температуры, который нельзя переходить, чтобы не вызвать пиролитического распада хлористого аллила. [c.172]


    В качестве побочных продуктов образуются пропионовый альдегид, ацетальдегид, формальдегид, ацетон, СО, СОа и вода. Катализаторо.м-для этого процесса служит окись меди, нанесенная на непористый носитель (пемзу или карборунд) в количестве 0,5—1,5% (масс.). Позднее был разработан молибдено-кобальтовый катализатор с висмутом и другими добавками. Окисление ведут при 320—350 °С и времени контакта 0,5—1,0 с в присутствии водяного пара, позволяющего улучшить условия выделения акролеина и подавляющего реакции глубокого окисления. Последний эффект достигается также при добавлении в исходную газовую смесь микроколичеств (0,05% от массы пропилена) бромистых или хлористых алкилов. Состав исходной смеси диктуется пределами взрывоопасных концентраций. Соотношение (мольное) пропилен кнслород водяной пар поддерживают равным 4 1 5 или 1 1,5 3, т. е. выше верхнего или ниже нижнего пределов взрываемости. В зависимости от состава газовой смеси процесс ведут с рециркуляцией пропилена или без нее. Реакцию окисления проводят в многотрубчатых контактных аппаратах с солевым теплоносителем. Реакционные газы проходят водную промывку, при этом получают 1,5—2%-ный раствор акролеина в воде,содержащий также побочные продукты реакции — ацетальдегид, пропионовый альдегид й т. д. Акролеин выделяется из водного раствора, ректификацией очищается от ацетальдегида и экстрактивной дистилляцией с водой — от пропионового альдегида. Выход акролеина составляет 67—70% при степени превращения пропилена 50%. [c.207]

    При дегидрогенизации предельных углеводородов в олефины при темпе-Й>атуре 500 --700° применялась смесь окиси алюминия и окиси хрома, приготовленная осаждением окиси хрома из раствора в присутствии порошкообразной или гранулированной окиси алюминия. Предельные углеводороды превращались непосредственно в олефины этилен, пропилен или изобутилен. Рекомендуется разбавление инертным газом или олефином, соединяющимся. С выделенным водородом. В частности, это относится к этилену, если производится дегидрогенизация высших углеводородов [47]. Дегидрогенизация спиртов, эфиров, альдегидов и кетонов успешно проходит на катализаторе, содер- жащем окиси кадмия и цинка, частично соединившиеся с окисью хрома в хромит. При приготовлении этого катализатора 62 г азотнокислого кадмия растворяют в 150 сзи воды и добавляют 574 г сернокислого цинка, растворенного в 2 л воды. В эту смесь добавляют 2,2 л раствора, содержащего 305 г хромово-/кислого аммония, нейтрализованного гидратом окиси аммония. Полученный осадок промывают, высушивают и нагревают в муфельной печи до 400° в течение 4 часов, при этом смесь превращается в черный порошкообразный продукт выделением аммиака и азота. Потеря в весе равна 25% [ИЗ]. [c.289]

    В колонне 3 отгоняется этилбензол с примесями кислот, поэтому верхний продукт также направляется в скруббер 4. Из куба колонны 3 сконцентрированный гидропероксид поступает в колонну эпоксидирования 6. (Эпоксидирование можно также проводить в каскаде реакторов.) В нижнюю часть колонны подается катализаторный раствор из куба колонны 9. Туда же проводится подпитка свежим катализатором. Свежий и возвратный (из колонны 7) пропилен также подается в нижнюю часть колонны. Продукты реакции вместе с катализаторным раствором выводят из верхней части колонны и направляют в ректификационную колонну 7для отгонки пропилена. Газы выводят из верхней части колонны и из системы для утилизации или сжигания. Кубовый продукт колонны 7по-ступает в ректификационную колонну 8 для выделения в качестве дистиллята продуктового оксида пропилена. Кубовая жидкость колонны 5 поступает в колонну 9 ддя отделения продуктов синтеза от катализаторного раствора. Катализаторный раствор из куба колонны возвращается в колонну эпоксидирования 6, а верхний продукт поступает в ректификационную колонну 10ддя отделения этилбензола от метилфенилкарбинола и ацетофенона. Смесь метилфенилкарбинола (МФК) и ацетофенона подается в испаритель 11, в котором с помощью перегретого пара испаряются и отделяются от смол метилфенилкарбинол и ацетофенон. Смесь паров, перегретая до 300 °С, поступает в реактор 13 для дегидратации метилфенилкар- [c.319]

    Процессы депарафинизации и обезмасливания могут проводиться в чистых углеводородных растворителях, таких, как пропан и гептан. Эти растворители характеризуются высокой растворяющей способностью по отношению к твердым углеводородам, что требует для их выделения глубокого охлаждения. Перевод промышленной установки депарафинизации в пропановом растворе на смесь пропилен-ацетон позволяет депарафинировать сырье любой вязкости и получать масла с температурой застывания-20 Ч- 25 °С. Добавление ацетона к углеводородному растворителю снижает его растворяющую способность, и это обеспечивает более полное вьщеление твердых углеводородов из раствора при снижении температурного эффекта депарафинизации до 10-15 °С. Растворитель одновременно служит и хладагентом, причем испарение растворителя происходит с определенной скоростью, для чего на установке предусмотрен автоматический контроль охлаждения суспензии твердых углеводородов. Для предотвращения обводнения ацетона, энергично поглощающего воду, установка дооборудована секцией для отделения воды. [c.85]


    Газы термического и каталитического крекинга нефтей содержат 2—2,5% этилена. Количество этилена, получающегося при термическом крекинге, не превышает 0,15% вес. на переработанное сырье и при каталитическом крекинге — 0,45%. Поэтому обычно газоразделительная установка этиленового производства работает на сырье, представляющем смесь крекинг-газа и газов пиролиза некоторых компонентов этого же крекинг-газа (этана, пропана, пропилена, а иногда и бутана). Схема получения этилена из таких газов приведена на рис. 19, б. Нефтезаводские газы проходят систему очистки и направляются на компрессию и предварительную осушку. Перед компрессией к этому потоку присоединяют газы пиролиза, содержащие до 30—35% объемн. этилена. После компрессии, предварительного выделения тяжелых углеводородов и глубокой осушки смесь направляют на газоразделение. Целевым продуктом газоразделения является этилен, иногда пропилен и бутан-бутиле-новые смеси, а предельные углеводороды — этан и пропан — возвращают на установку пиролиза. [c.22]

    Смесь газа и реакционной жидкости выходит с верха колонны I, охлаждается водой в холодильнике 9 и попадает в сепаратор 10 высокого давления. В нем окись углерода и водород отделяются от жидкости, а непрореагировавший пропилен (степень конверсии более 90%) и пропан остаются главным образом в жидкой фазе. Газ циркуляционным компрессором 6, компенсирующим потери давления в аппаратуре, снова подают на реакцию, но часть его выводят из системы во избежание чрезмерного накопления инертных примесей. Жидкость из сепаратора 10 проходит редукционный клапан 11. где ее давление снижается почти до атмосферного, и попадает в сепаратор 12 низкого давления. Там отделяются растворенные газы (в том числе пропилен и пропан) и происходит частичное разложение карбонилов кобальта с выделением окиси углерода. Так как с газом уносится значитель- [c.754]

    Смесь газа и реакционной жидкости выходит с верха колонны 8, охлаждается водой в холодильнике 9 и попадает в сепаратор 10 высокого давления. В нем окись углерода и водород отделяются от жидкости, а непрореагировавший пропилен (степень конверсии более 90%) и пропан остаются главным образом в жидкой фазе. Газ циркуляционным компрессором 6, компенсирующим потери давления в аппаратуре, снова подают на реакцию, но часть его выводят из системы во избежание чрезмерного накопления инертных примесей. Жидкость из сепаратора 10 проходит редукционный клапан И, где ее давление снижается почти до атмосферного, и попадает в сепаратор 12 низкого давления. Там отделяются растворенные газы том числе пропилен и пропан) и происходит частичное разложение карбонилов кобальта с выделением окиси углерода. Так как с газом уносится значительное количество летучих масляных альдегидов, его промывают в абсорбере 18 высшими спиртами и затем используют в качестве топлива. Раствор альдегидов из абсорбера 13 направляют на разделение или на гидрирование. [c.652]

    В процессе разработки промышленного метода производства хлористого аллила хлорированием пропилена пришлось встретиться со многими трудностями экспериментального характера. Так, например, реакцию следует проводить очень быстро. Если смешение производить на холоду и затем нагревать смесь, то присоединение хлора будет происходить вплоть до установления температуры, при которой начинается реакция замещения. Если же смешивать нагретые пропилен и хлор, могут происходить вспышки и выделение углерода. Кроме того, имеется верхний предел температуры процесса, который нельзя переходить, без того чтобы не вызвать пиролитического разложения хлористого аллила. При преодолении этих трудностей исследователи руководствовались выводами, сделанными Хассом в его работах по хлорированию парафиновых углеводородов в газовой фазе (см. гл. IV). Хлорированию подвергали пропилен, взятый в избытке пропилен не содержал пропана, так как пропан хлорируется в 1- и 2-хлорпропаны, температуры кипения которых мало отличаются от температуры кипения хлористого аллила Процесс пр водили так, чтобы хлор полностью вступал в реакцию как и в аналогичных методах [17, 18], чтобы избежать местных избытков хлора, газы очень хорошо перемешивали. [c.156]

    Сжатые до 1,6 МПа (16 кгс/см ) газы поступают в водяной холодильник 12, охлаждаются промышленной водой до 40 °С, затем охлажденной водой в аппарате 13 до 20 °С, откуда газожидкостная смесь поступает в сепаратор 14. Жидкость собирается в емкости 15, откуда возвратный пропилен подается на склад, а несконденсированные углеводороды направляются на выделение этилена, осуществляемое при его абсорбции холодным растворителем. [c.77]

    Для получения масел с низкой температурой застывания применяется процесс 01—Ме [42, 50, 68, 69], в котором растворителем служит смесь дихлорэтана (50—70% масс.), выполняющего роль осадителя твердых углеводородов, и метиленхлорида (50— 30% масс.), являющегося растворителем жидкой фазы. Использование этого растворителя позволяет получать депарафинированные масла с температурой застывания, близкой к температурам конечного охлаждения и фильтрования. Одним из достоинств процесса 01—Ме является высокая скорость фильтрования суспензии твердых углеводородов, достигающая 200 кг/(м -ч) на полную поверхность фильтра. В работах [42, 70] показана возможность иопользования для депарафинизаци и рафинатов широкого фракционного состава смесей дихлорэтана с дихлорметаном и дихлорэтана с хлористым пропиленом. Эти растворители позволяют проводить процесс депарафинизации с ТЭД в пределах О—1 °С, причем в случае двухступенчатого фильтрования содержание масла в парафине не превышает 2% (масс.). Наряду с этим большим достоинством хлорорганических растворителей является возможность исключить из технологической схемы установки систему инертного газа, так как эти растворители негорючи и взрывобезопасны. Общим недостатком всех хлорорганических растворителей является термическая нестабильность при 130—140 °С с образованием коррозионно-агрессивных продуктов разложения. Для выделения твердых углеводородов из масляных фракций предло- [c.158]

    Выделение тг-ксилола является сложным и продолжительным процессом, поэтому не удивительно, что предпринимались попытки найти новые пути получения терефталевой кислоты. В одном из этих новых способов в качестве исходных продуктов применяются бензол и пропилен, образующие нри взаимодействии смесь изомерных диизопропилбензолов. Ректификацией смеси можно выделить пара-изомер, который затем может быть подвергнут жидкофазному окислению. Недостаток этого метода заключается в том, что на каждое ароматическое кольцо приходится отщеплять от его заместителей четыре атома углерода в виде углекислого газа и таким образом терять их. [c.66]

    Перегонка под давлением при низких температурах применялась к в других случаях для пазделения газообразных смесей углеводородов. Например, смесь,, состоящую из метана, этилена и пропилена, сперва подвергают сжижению, а затем двухступенчатому процеосу ректификации. Газообразный метан удаляют,, причем в аппарате остается жидкая этилено-пропиленовая фракция, которую подвергают перегонке и получают этилен (газообразный) и пропилен (жидкий). Применяя компримированную смесь метана и этилена в качестве дополнительного теплообменного материал ., можно использовать для перегонки i тепло, поглощенное при охлаждении колонки для фракционирования. Таким же образом осуществляется выделение из газа крекинга этилена, пропилена и бутадиена i . [c.158]

    При пропускании этилена в хорошо охлажденную смесь азотной и серной кислот выделяется масло, которое состоит из смеси этиленгликольдинитрата и f -нктроэтилнитрата Выделение этих веществ можто осуществить фракционной перегонкой, или же смесь можно применять непосредственно, для за мены нитроглицерина в низкозамерзающих динамитах. Пропилен и бутилен образуют соответствующие производные. [c.629]

    Первой стадией разделения смеси является выделение из нее нропан-прониленовой фракции, которая в свою очередь разделяется на пропан и пропилен в снециальной колонне. Смесь С4 и разделяется на две фракции бутан-бутиленовую и Сд, из которых в дальнейшем специальными методами выделяют бутилены и амилены. [c.72]

    Проведенные опыты в СССР (3. П. Басыров) и за рубежом (Карват) показали, что в смеси с жидким кислородом взрывоопасны все углеводороды, но наибольшую опасность представляет смесь ацетилен—жидкий кислород эта смесь взрывается при наименьшей величине начального импульса (механического удара, ударной газовой волны). Установлено также, что при содержании ацетилена в жидком кислороде ниже предела его растворимости в кислороде система не взрывоопасна. Взрыв может происходить при насыщении жидкого кислорода ацетиленом выше предела растворимости, при выделении ацетилена в виде суспензии или при высаживании его на стенках сосуда в твердом виде. Такие углеводороды, как метан, этан, этилен, достаточно хорошо растворяются в жидком кислороде и воздухе и поэтому не накапливаются в аппаратах в твердом виде. Растворимость метана, например, в 300 раз больше, чем ацетилена меньшей растворимостью, чем указанные выше углеводороды, обладают пропан, пропилен, бутан и бутилен поэтому они представляют большую опасность в случае высокого содержания их в перерабатываемом воздухе. Наиболее опасен пропилен по способности к взрыву он находится на втором месте после ацетилена. [c.703]

    Были исследованы реакции атомов Н с этиленом, пропиленом, изобутиленом, тетраметилэтиленом и циклогексепом в присутствии Ва- Продукты реакции разделялись методом низкотемпературного и глубоковакуумного испарения. Выделенные фракции углеводородов сжигались над СиО, и в воде, полученной после сожжения (0,5—2 мг), определялось содержание дейтерия по упругости пара анализируемой воды [19]. С каждым из веществ были проведены две серии опытов. В первой из них через разряд пропускали смесь водорода с аргоном и к струе, несущей атомы Н, добавляли олефин и дейтерий. В этих условиях первичные радикалы образовывались по реакции (4) при практически полном отсут-< .твии атомов дейтерия. Аргон добавлялся для уменьшения доли молекулярнох о водорода в системе, т. е. для увеличения величины [c.43]

    Технология прямой гидратации пропилена в изопропиловый спирт разработана немецкой компанией RWE-DEA AG. Процесс протекает в реакторе, заполненном шариковым катализатором. Получаемый в реакторе изопропиловый спирт концентрируется в водном растворе в нижней части реактора. Непрореагировавший пропилен и побочный продукт (изопропиловый эфир) направляется на выделение остаточного газа. Очищенная фракция С3 направляется в пропиленовую колонну, где концентрируется до 90%-го содержания пропилена и снова направляется в процесс. Смесь изопропилового спирта и изопропилового эфира направляются на азеотропную перегонку. В колонне азеотропной перегонки выделяется азеотроп изопропилового спирта с 5%-ми изопропилового эфира и 15%-ми воды. После осушки азеотропа и экстративной очистки от эфира получают товарный продукт. [c.288]


Смотреть страницы где упоминается термин Пропилен, выделение из смеси: [c.204]    [c.83]    [c.221]    [c.465]    [c.266]    [c.156]    [c.273]    [c.108]    [c.83]   
Руководство по газовой хроматографии (1969) -- [ c.334 ]

Руководство по газовой хроматографии (1969) -- [ c.334 ]

Руководство по газовой хроматографии (1969) -- [ c.334 ]




ПОИСК





Смотрите так же термины и статьи:

Выделение пропилена



© 2025 chem21.info Реклама на сайте