Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мазут гидрокрекинг

    Процесс гидрокрекинга с трехфазным псевдоожиженным слоем катализатора предназначен для переработки нефтяных остатков с высоким содержанием смол, сернистых и металлорганических соединений с целью получения малосернистых нефтепродуктов бензина, реактивного, дизельного и котельного топлив. Сырьем могут служить мазут, гудрон, тяжелые вакуумные газойли, газойли коксования, крекинг-остатки, высоковязкие нефти из битуминозных пород и др. [5]. [c.49]


    Вакуумные установки для перегонки мазута. При перегонке в вакууме из мазута получают масляные дистилляты, различающиеся по температурам кипения, вязкости и другим свойствам, в качестве остатка — полугудрон или гудрон. Вакуумные установки (ВТ) делятся на топливные и масляные. На топливных установках из мазута отбирают широкую фракцию до 550° С — вакуумный газойль, который используют в качестве сырья для каталитического крекинга или гидрокрекинга. [c.302]

    Основное назначение установки (блока) вакуумной перегонки мазута топливного профиля — получение вакуумного газойля широкого фракционного состава (350 — 500 °С), используемого как сырье установок каталитического крекинга, гидрокрекинга или пиролиза и в некоторых случаях — термического крекинга с получением дистиллятного крекииг —остатка, направляемого далее на коксование с целью получения высококачественных нефтяных коксов. [c.186]

    Процесс гидрокрекингу предназначен в основном для получения малосернистых топливных дистиллятов из различного сырья. Обычно гидрокрекингу подвергают вакуумные и атмосферные газойли, газойли термического и каталитического крекинга, деасфальтизаты и реже мазуты и гудроны с целью производства автомобильных бензинов, реактивных и дизельных топлив, сырья для нефтехимического синтеза, а иногда и сжиженных углеводородных газов (из бензиновых фракций). Водорода при гидрокрекинге расходуется значительно больше, чем при гидроочистке тех же видов сырья. [c.47]

    Сверхглубокая степень переработки нефти, ярко выраженный бензиновый профиль НПЗ США достигается широким использованием вторичных процессов, таких, как каталитический крекинг ( 36 %), каталитический риформинг (-19 %), гидроочистка и гидрообессеривание (-47% , гидрокрекинг (9,3%), коксование, алкилирование, изомеризация и др. Наиболее массовый продукт НПЗ США -автобензин (42 % на нефть). Соотношение бензин дизельное топливо составляет 2 1. Котельное топливо вырабатывается в минимальных количествах - 8 % на нефть. Глубокая (-93 %) степень переработки нефти в США обусловлена применением прежде всего каталитического крекинга вакуумного газойля и мазутов, гидрокрекинга и коксования. По мощностям этих процессов США существенно опережают другие страны мира. [c.661]

    Наиболее массовый продукт НПЗ США — автобензин (42 % на нефть). Соотношение бензин дизельное топливо составляет 2 1. Котельное топливо вырабатывается в минимальных количествах — 8 % на нефть. Глубокая (=93%) степень переработки нефти в США обусловлена применением прежде всего каталитического крекинга вакуумного газойля и мазутов, гидрокрекинга и коксования. По мощностям этих процессов США существенно опережают другие страны мира. [c.862]


    Наиболее распространенный прием углубления переработки нефти — это вакуумная перегонка мазута и раздельная переработка вакуумного газойля (каталитическим и гидрокрекингом) и гудрона. Получающийся гудрон, особенно в процессе глубоковакуумной перегонки, непосредственно не может быть использован как котельное топливо из — за высокой вязкости. Для получения товарного котельного топлива из таких гудронов без их переработки требуется большой расход дистиллятных разбавителей, что сводит практически на нет достигнутое вакуумной перегонкой углубление переработки нефти. Наиболее простой способ неглубокой переработки гудронов [c.49]

    Комбинация гидрообессеривания гуДрона с гидрокрекингом, включая гидрокрекинг вакуумного газойля, обеспечивает максимально возможную выработку фракций дизельного топлива (рис. 5.2). Из мазута товарной смеси западносибирских нефтей по этой схеме может [c.178]

    I. Использование технологических группировок. Можно, например, считать индивидуальными реагирующими веществами бензиновую фракцию, газ, мазут и т. п. Их превращения позволяют охарактеризовать химические процессы, направленные на изменение молекулярной массы и протекающие при крекинге или гидрокрекинге. Для процессов крекинга нужно, однако [1], учитывать, что при технологической группировке за непревращен-ное сырье принимается фракция с одинаковыми температурами начала и конца кипения (или температурами 10 и 90%-ных отгонов), что и у сырья. На самом деле эта фракция может отличаться от сырья по ряду показателей вследствие химических превращений, приводящих к появлению новых веществ, но выкипающих в тех же пределах, что и сырье. Иными словами, технологическая группировка позволяет учитывать появление новых фракций, но оказывается неудобной при учете влияния условий процесса на качественные показатели продуктов или влияния рециркуляции. [c.92]

    Так как Azk>0, а Azs<0 (содержание серы убывает), оба члена этого уравнения являются отрицательными. Нами рассчитаны величины qn для различных вариантов гидроочистки — гидрокрекинга мазута и деасфальтированного гудрона. В исследованиях изменением режимных параметров удавалось регулиро- [c.152]

    Гидрокрекинг мазута высокосернистой нефти 11,0 34,5 10,2 9,1 18,2 17,0 [c.281]

    Если учесть, что три четверти всего количества добываемой. нефти приходится на сернистые и высокосернистые нефти и что почти половина добываемой нефти используется как котельное топливо (особенно в Западной Европе и Японии), то становится ясным, что при добыче нефти более 2 млрд. т в год производственные мощности процессов гидроочистки и гидрокрекинга мазутов составят несколько сот млн. т в год. [c.13]

    Приводится обзор патентов по катализаторам гидрокрекинга дистиллятов и мазутов. [c.90]

    Глубоковакуумная перегонка мазута. Отечественная нефтеперерабатывающая промышленность не располагает пока освоенной технологией глубоковакуумной перегонки (ГВП) мазутов, предназначенной для получения утяжеленного вакуумного газойля с температурой конца кипения до 580 - 620 °С с целью расширения ресурсов сырья каталитического крекинга и гидрокрекинга. Расчеты показывают (табл. 2.2.) что при ГВП нефтей типа западно-сибирских выход утяжеленного вакуумного газойля (350 - 590 "С) составит 34,1%, что примерно в 1,5 раза больше по сравнению с отбором традиционного вакуумного газойля (350 - 500 С), выход которого составляет 24,2%. Посколь-48 [c.48]

    Следует отметить, что для США, обладающих огромным автопарком, исторически характерно высокое потребление автомобильного бензина и других моторных топлив. Удельный вес остаточного котельного топлива относительно невелик (табл. П.1), причем около 50% потребностей в этом продукте удовлетворяется за счет импорта (основная статья импорта нефтепродуктов), главным образом из стран Карибского бассейна. В связи с этим для нефтепереработки США характерна высокая доля деструктивных процессов (каталитического крекинга, гидрокрекинга, коксования), позволяющих. получать из мазута более ценные продукты — моторное топливо и нефтехимическое сырье (табл. П.2), а также значительная доля процессов, обеспечивающих формирование качества товарных нефтепродуктов (риформинга, алкилирования, гидроочистки и др.). В целом доля вторичных процессов составляет 141% (табл. И.З), а глубина переработки нефти, оцениваемая по выходу моторных топлив и сырья для нефтехимии, превышает 75% (табл. П.4 и П.5). [c.26]

    Одновременно с целью привести в соответствие структуры потребления и производства нефтепродуктов предпринимались значительные усилия по расширению мощностей деструктивных процессов переработки нефти, обеспечивающих сокращение производства мазута и увеличение выработки светлых нефтепродуктов. За 1974—1984 гг. мощности процессов каталитического, термо- и гидрокрекинга возросли с 21,1 до 31,3 млн. т, а их удельный вес достиг 29%, что позволило ФРГ выйти на первое место в Европе по уровню развития деструктивных процессов. Это обеспечило ФРГ лидирующую роль в области углубления переработки нефти и позволило снизить выход мазута на нефть с 29,7% в 1973 г. до 17,1% в 1981 г. (первое место в Европе). [c.60]


    В настоящее время такие крупные инвестиции не под силу большинству японских нефтеперерабатывающих компаний, несущих крупные убытки из-за значительной недогрузки мощностей заводов. Поэтому в ближайшие годы строительства чрезмерно большого числа новых установок деструктивной переработки не ожидается., Углубление переработки будет происходить главным образом за счет реконструкции бездействующих установок атмосферной перегонки под процесс висбрекинга и перевода установок гидрообессеривания мазута на режим гидрокрекинга (замена катализатора, повышение давления), что почти не требует капиталовложений. [c.80]

    В современной мировой нефтепереработке наиболее акту — а/.ьной и сложной проблемой является облагораживание (деметал — лизация, деасфальтизация и обессеривание) и каталитическая переработка (каталитический крекинг, гидрокрекинг) нефтяных остатков — гудронов и мазутов, потенциальное содержание которых в нефтях большинства месторождений составляет 20 — 55 %. [c.220]

    Несмотря на то, что в составе сырья НПЗ Мексики свыше 30% приходится на тяжелую (плотность 0,9218) высокосернистую (содержание серы — 2,8% масс.) нефть месторождения Майя, для них характерна сравнительно глубокая переработка нефти выпуск мазута не превышает 33% на нефть (табл. IV. 5). Соответственно для нефтеперерабатывающей промышленности Мексики характерна сравнительно высокая насыщенность вторичными, в том числе деструктивными, процессами. Из числа последних на НПЗ Мексики представлены ККФ, гидрокрекинг и висбрекинг. За последние 10 лет мощности этих процессов возросли почти в три раза, а их удельный вес к 1 января 1985 г. достиг 31,4%. Почти в четыре раза увеличились мощности процессов гидроочистки и гидрообессеривания, составившие 23,1 млн. т, или 37% (табл. .6, IV.7). В ближайшие годы предполагается дальнейший рост мощностей вторичных процессов, обусловленный необходимостью увС личения глубины переработки нефти (каталитический крекинг, висбрекинг) и повышения качества продукции (гидроочистка, риформинг). [c.99]

    Вакуумная перегонка мазута. Основное назначение установок вакуумной перегонки (ВП) мазута топливного профиля - производство вакуумного газойля широкого фракционного состава (350 -500 С), используемого как сырье установок каталитического крекинга, гидрокрекинга или пиролиза, а в некоторых случаях - термического крекинга с получением дистиллятного крекинг-остатка, направляемого далее на коксование с целью получения высококачественных нефтяных коксов специальной (игольчатой) структуры. Помимо фракционного состава, вакуумный газойль должен удовлетворять требованиям по коксуемости и содержанию металлов, которые существенно влияют на активность, селективность и срок службы катализаторов процессов гидрооблагораживания и каталитической переработки газойлей. Типовой процесс ВП мазутов (рис. 2.5) обычно осуществляют по схеме однократного испарения в одной тарельчатой, а в последние годы и насадочной колонне при температуре 380 - 415 °С с подачей в низ колонны водяного пара при остаточном давлении в зоне питания 100 - 200 мм рт. ст. (133 - 266 гПа) и в верху колонны 60 - 100 мм рт. ст. (53 - 133 гПа). [c.47]

    При сопоставлении процессов ККФ, гидрокрекинга, замедленного коксования, висбрекинга, висбрекинга в сочетании с термическим крекингом (табл. VI. 1 — VI. 4) в качестве сырья был выбран мазут легкой аравийской нефти из расчета переработки 1880 тыс. т/год. В процессах коксования, направленных на получение товарного кокса, содержание серы в сырье не должно превышать 1,4%, а в гудроне легкой аравийской нефти оно составляет 4,2%. Поэтому при использовании этого гудрона в качестве, сырья для коксования его необходимо подвергнуть гидрообессериванию, что существенно ухудшит экономические показатели процесса, В связи с этим показатели процесса за- [c.130]

    Мазут — остаток атмосферной перегонки нефти — применяется как котельное топливо, его компонент или в качестве сырья установок вакуумной перегонки, а также термического, каталитического крекинга и гидрокрекинга. [c.71]

    Сырье и продукция. В качестве основного сырья гидрокрекинга используется дистиллятный продукт вакуумной перегонки мазута — остатка атмосферной перегонки нефти. Ниже приведены основные характеристики типичного вакуумного дистиллята сернистой западно-сибирской нефти  [c.149]

    Расходные показатели процесса гидрокрекинга на 1 т сырья топливо (в пересчете на мазут) 20—25 кг пар (1,6 МПа) 23 кг, пар (0,2 МПа) 13 кг электроэнергия 51 кВт-ч вода охлаждающая 2,9 м1 [c.240]

    Вакуумная перегонка мазута по топливному -варианту предназначена для получения широкой масляной фракции (вакуумного газойля) с температурами выкипания 350—500 °С как сырья установки (каталитического крекинга и гидрокрекинга. Широкая масляная фракция должна быть светлой или слегка окрашенной, свободной от смолисто-асфальтеновых веществ и содержать минимальные концентрации металлов, особенно Ni и V, которые сильно влияют на активность, селективность и срок службы алюмоси-ликатных катализаторов. Никель и ванадий находятся в нефти в виде комплексов с порфнринами, выкипающих при температуре около 450°С и концентрирующихся при перегонке главным образом в асфальтенах. [c.174]

    В качестве сырья в процессе каталитического крекинга в течение многих десятилетий традиционно использовали вакуумный дистиллят (газойль) широкого фракционного состава (350 — 500 °С). В ряде случаев в сырье крекинга вовлекаются газойлевые фракции термодеструктивных процессов, гидрокрекинга, рафинаты процессов деасфальтизации мазутов и гудронов, полупродукты масл51 — ного производства и др. [c.103]

    I - вакуумная разгонка 2 - деасфальтизация 3 - гидрообессеривание деасфальтированного гудрона P D Unibon 4 — гидрокрекинг 5 — производство водорода. Линии I — мазут II - вакуумный газойль III - гудрон IV — деасфальтировая-иьш гудрон V - концентрат асфальтенов VI - бензин VII - средние дистилляты VIII - топливо IX - водород. [c.182]

    Вариантом комбинации одновременно четырех основных процессов перерабоски мазута является схема фирмы Shevron [131] (рис. 5.5). В схему включены установки гидрообессеривания мазута, переработка вакуумного дистиллята, вьщеленного из гидрокрекинга, путем его гидрокрекинга и каталитического крекинга, а остаток вьпие 550 °С в определенном отношении с гудроном подвергается коксованию с получением заданного качества кокса. Схема обеспечивает широкий ассортимент продуктов, включая нефтяной кокс, качество которого [c.182]

    Исходя из этих соображений были предложения характери — зопать ГПН по величине отбора светлых нефтепродуктов только втс ричными процессами (гидрокрекингом, каталитическим креки 1ГОМ и т.д.) из фракций нефти, выкипающих выше 350 °С (то есть из мазута). В соответствии с этой методикой переработка нефти атмосферной перегонкой будет соответствовать нулевой глубине пе])еработки. [c.249]

    Из анализа приведенных в табл. 11.11 данных и сопоставлении иу с данными табл. 11.10 можно констатировать, что по оснащение сти вторичными процессами и, прежде всего углубляющими нефтепереработку, НПЗ страны значительно отстают от развитых стран мира. Так, суммарная доля углубляющих нефтепереработку процессов коксования, каталитического и гидрокрекинга в нефтепереработке бывшего СССР в 1987 г. составила всего 6,4 %, то есть в -10 раз ниже, чем на НПЗ США. Надо еще отметить, что более половины из установок прямой перегонки нефти не оснащены блоком вакуумной перегонки мазута. В составе отечественных НПЗ нет ни одного внедренного процесса по каталитической переработке 1 удронов в моторные топлива. Эксплуатируемые на двух НПЗ установки гидрокрекинга приспособлены лишь для переработки вакуумных газойлей. [c.288]

    Предназначен для гидрообессеривания высокосернистых мазутов и гудронов из легких и тяжелых нефтей. Характеристики сырья и Выходы продуктов приведены в табл. 4.1. Схема процесса (рис. 4.1) однопроходная по сырью с очисткой циркуляционного газа от сероводородов [130]. Катализатор разработан самой фирмой, устойчив к отложению металлов, длительность работы от шести мес до года. Данных по содержанию металлов в сырье не приводится. Основной прюдукт — малосернистый остаток, который может быть использован как компонент малосернистого котельного топлива. Или после вакуумной перегонки дистиллят направляется на гидрокрекинг, а остаток на коксование для получения [c.152]

    Перспективной схемой глубокой переработки сернистых мазутов является комбинированная система КТ-2Аа [146]. Система включает глубоковакуумную перегонку мазута, легкий гидрокрекинг вакуумного газойля с получением компонента дизельного топлива и сырья дпя каталитического крекинга, каталитический крекинг с узлом каталитической очистки и газофракционирование (рис. 5.6). Отдельным блоком предусматривается деасфальтизация гудрона выше 540 (580 °Q) углеводородным растворителем и гидрообессеривание деасфальтизата с получением легких дистиллятов, сырья для каталитическА-о крекинга и замедленного коксования. По данным разработчика эта система обеспечит в три раза большую прибыль по сравнению со схемой, в которой гудрон подвергается висбрекингу. [c.184]

    В самом деле, уже сейчас в мире ежегодно добывается и перерабатывается более 2 млрд. т нефти и получаются сотни миллионов тонн угольных и сланцевых смол. Их чистка от сернистых, азотистых, металлосодержащих соединений и других примесей, превращение в высококачественные моторные, реактивные и котельные топлива, а также полупродукты для химической переработки невозможны без процессов гидрогенизации. Процессы гидроочистки, гидрокрекинга, гидрирования и другие процессы, осуществляемые под давлением водорода, в настоящее время определяют технический уровень нефтеперерабатывающей и нефтехимической промышленности. Уже строятся и проектируются заводы, в которых вся сырая нефть или все ее погоны так или иначе облагораживаются при помощи процессов гидрогенизации. С развитием методов гидродесуль-фуризации тяжелых нефтяных продуктов — вакуумных дистиллятов, деасфальтизатов и мазутов — уже в ближайшее десятилетие суммарная мощность гидрогенизационных процессов и процессов риформинга и изомеризации, также осуществляемых под давлением водорода, приблизится к миллиарду тонн в год. [c.5]

    Деструктивная гидрогенизация мазута ромашкинской нефти на порошкообразных катализаторах. Лучшим катализатором является хромовый, снижающий содержание асфальтенов с 5,9 до 0,7% и полностью обессеривающий фракцию до 325 °С. Длительность пробега 50 ч Гидрокрекинг сырой аравийской нефти, содержащей 3,23% серы и 12,9% асфальтенов. Полнота удаления серы до 90%. Процесс улучшается при добавке разбавителя [c.63]

    Гидрокрекинг в трехфазном псевдоожиженном слое катализатора разработан на холодной модели (см. з ) и проверен на пилбтной установке с дистиллятным сырьем и мазутом арланской нефти. Глубина расщепления и обессеривания значительно больше, чем в неподвижном слое катализатора (см.з ). Из мазута с 4,11% серы получено 4,9% бензина, 51,2% дизельного топлива и 38,5% остатка >360° С, содержащего 0,84% серы [c.83]

    Сопоставлены результаты гидрокрекинга различного сырья на стационарном и движущемся катализаторах. Первые более эффективны но удалению серы, азота и кислорода при низких объемных скоростях, вторые — при более высоких. По выходу нафты катализаторы различаются только при низких объемных скоростях Описано модифицирование носителя кобальтмолибде-нового катализатора для гидроочистки мазутов (см.з ) добавками 1,5—3,1%- металлов второй группы. Окиси Be, Mg, Са, Sr, Zn и d увеличивают объем микропор и активность катализатора, а окись Ва — уменьшает Изучалось прямое обессеривание тяжелых масел и сырых нефтей на катализаторе повышенной активности в системе с движущимся слоем катализатора. Активность катализатора повышается с увеличением содержания СоО и М0О3. Из остатка с 4,26% серы получен продукт, содержащий 0,9% серы [c.87]

    К числу важнейших преимуществ, которые дает переработка остатков с помощью ККФ, относится возможность при сравнительно (например, с гидрокрекингом) небольших эксплуатационных расходах практически полностью переработать сырье в дистиллятные продукты (значительную долю которых составляет бензин) и газ (табл, V. 5). Кроме того, при ККФ остатков образуется повышенное количество кохса, и тепло, выделяющееся при его сгорании в регенераторе и утилизируемое в виде водяного пара среднего давления, не только покрывает потребность установки ККФ в паре, но и в значительной степени может удовлетворить потребности в паре всего НПЗ. В этом смысле ККФ остатков можно рассматривать как энерготехнологический процесс. Наконец, переработка в процессе ККФ мазута позволяет исключить вакуумную перегонку, что дает дополнительный выигрыш в энергии. [c.106]

    Схемой предусмотрена также выработка ароматических углеводородов. С целью подготовки сырья для пиролиза в схеме завода предусматривается денормализация рафинатов, остающихся после извлечения из катализата ароматических углеводородов. Предусмотрено также битумное производство вакуумной перегонкой мазутов. В связи с внедрением в промышленность гидрокрекинга последний может быть введен в поточную схему для гид-рообессеривания мазутов. Для снабжения гидрокрекинга водородом в схеме завода предусмотрено водородное производство, включающее производство водорода конверсией нефтезаводских углеводородсодержащих газов и извлечение из них высококонцентрированного водорода с помощью низких температур. Схема такого завода компактна по застройке, на нем ниже численность обслуживающего персонала, выше производительность труда. [c.14]

    Висбрекинг. Наиболее распространенный прием углубления переработки нефти - это вакуумная перегонка мазута и раздельная переработка вакуумного газойля (каталитический или гидрокрекинг) и гудрона. Получающийся гудрон, особенно в процессе глубоковакуумной перегонки, непосредственно не может быть использован как котельное топливо из-за высокой вязкости. Для получения товарного котельного топлива из таких гудронов без их переработки требуется большой расход дистиллятных разбавителей, что сводит практически на нет достигнутое вакуумной перегонкой углубление переработки нефти. Наиболее простой способ неглубокой переработки гудронов-это висбрекинг с целью снижения вязкости,, что уменьшает расход разбавителя на 20-25%(мас.), а также соответственно общее колич[ество котельного топлива. Обычно сырьем для висбрекинга является гу дрон, но возможна и переработка тяжелых нефтей, мазутов, даже асфапьтов процессов деасфальтизации. Висбрекинг проводят при менее жестких условиях, чем термокрекинг, вследствие того, что, во-первых, перерабатывают более тяжелое, следовательно, легче крекируемое сырье во-вторых, допускаемая глубина креКинга ограничивается началом коксообразования (температура 440-500°С, давление 1,4-3,5 МПа). Исследованиями установлено, что по мере увеличения продолжительности (т.е. углубления) крекинга вязкость крекинг-остатка вначале интенсивно снижается, достигает минимума и затем возрастает. [c.66]

    Отличительными особенностями установок, работающих по схеме трехфазного слоя, является большая технологическая ги6кост1у, способность перерабатывать любые виды остатков в режиме гидрсз-обессеривания или гидрокрекинга с различной глубиной конверсии. Фирма приводит показатели процесса переработки мазута тяжело 11 аравийской нефти и двух типов гудронов с различным содержанием металов на установке производительностью соответственно 9500 (I) и 6360 м3/сут (II)  [c.201]


Смотреть страницы где упоминается термин Мазут гидрокрекинг: [c.284]    [c.23]    [c.14]    [c.219]    [c.254]    [c.13]    [c.291]    [c.29]    [c.152]    [c.124]   
Водород свойства, получение, хранение, транспортирование, применение (1989) -- [ c.433 ]




ПОИСК





Смотрите так же термины и статьи:

Гидрокрекинг

Мазут



© 2024 chem21.info Реклама на сайте