Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мазуты гидроочистка

Рис. 6. Продукты, получаемые на установках АВТ, и пути их использования г / — вторичная перегонка, гидроформинг 2 — пиролиз, производство ароматических углеводородов 3 — депарафиннзация, компаундирование 4 — компаундирование керосина, гидроочистка 5 — депарафиннзация, пиролиз 6 — каталитический крекинг 7. 8, 9, 10 — селективные очистки дистиллятных масел депарафиннзация карбамидом, адсорбционная очистка //—I3 — производство кокса, котельного топлива, сортовых мазутов /4 — переработка газа полученне сырья для нефтехимических производств 15—17 — деасфальтизация, производство кокса, термический крекинг. /—V — компоненты светлых нефтепродуктов (°С) н. к.— 62. 62—85, 85—105, 105—120, 120—140, 140—240, 240—300, 300—350 V/— мазут, >350 V//— газ V///— гудрон, >500 /Х—Х///— вакуумные фракции ("С) 350—400, 400—420, 420—490 (500) >490 (500). Рис. 6. Продукты, получаемые на установках АВТ, и пути их использования г / — <a href="/info/309778">вторичная перегонка</a>, гидроформинг 2 — пиролиз, <a href="/info/404901">производство ароматических углеводородов</a> 3 — депарафиннзация, компаундирование 4 — компаундирование керосина, гидроочистка 5 — депарафиннзация, пиролиз 6 — <a href="/info/25178">каталитический крекинг</a> 7. 8, 9, 10 — <a href="/info/63444">селективные очистки</a> дистиллятных масел депарафиннзация карбамидом, <a href="/info/310106">адсорбционная очистка</a> //—I3 — <a href="/info/652480">производство кокса</a>, <a href="/info/80857">котельного топлива</a>, сортовых мазутов /4 — <a href="/info/1619770">переработка газа полученне</a> сырья для <a href="/info/1469975">нефтехимических производств</a> 15—17 — деасфальтизация, <a href="/info/652480">производство кокса</a>, <a href="/info/66231">термический крекинг</a>. /—V — <a href="/info/1455545">компоненты светлых нефтепродуктов</a> (°С) н. к.— 62. 62—85, 85—105, 105—120, 120—140, 140—240, 240—300, 300—350 V/— мазут, >350 V//— газ V///— гудрон, >500 /Х—Х///— вакуумные фракции ("С) 350—400, 400—420, 420—490 (500) >490 (500).

    На рис. 1.4—1.6 изображены три схемы потоков современных НПЗ. Заводы с неглубокой переработкой нефти по топливному варианту (рис. 1.4) до недавнего времени строились в тех районах, где отсутствуют другие источники органического топлива (уголь, природный газ), а для снабжения энергетических установок используется остаток от перегонки нефти — мазут. Из нефти выделяют изначально содержащиеся в ней светлые дистиллятные фракции, которые затем облагораживают с применением вторичных процессов — каталитического риформинга, изомеризации, гидроочистки. В схеме завода предусмотрено также получение жидкого парафина — сырья для биохимических производств и битума. [c.16]

    Не менее важ ным направлением является также концентрация праизводства — комбинирование различных технологических процессов в одной установке и увеличение единичной мощности установок. На современных НПЗ в одной установке комбинируют следующие процессы обессоливание и обезвоживание с первичной перегонкой 1нефти и мазута, стабилизацию и вторичную перегонку бензинов (установка ЭЛОУ — АВТ) гидроочистку и каталитический риформинг бензинов (установка Л-35/М) подготовку и первичную перегонку нефти, каталипичеокий риформинг бензинов, гидроочистку реактивных и дизельных топлив, газофракциониро-вание (установка ЛК-6У) и т. д. [c.344]

    Процесс гидрокрекингу предназначен в основном для получения малосернистых топливных дистиллятов из различного сырья. Обычно гидрокрекингу подвергают вакуумные и атмосферные газойли, газойли термического и каталитического крекинга, деасфальтизаты и реже мазуты и гудроны с целью производства автомобильных бензинов, реактивных и дизельных топлив, сырья для нефтехимического синтеза, а иногда и сжиженных углеводородных газов (из бензиновых фракций). Водорода при гидрокрекинге расходуется значительно больше, чем при гидроочистке тех же видов сырья. [c.47]

    Гидроочистка применяется для очистки от серы бензиновых, керосиновых и дизельных фракций, а также парафинов и масел вместо очистки их глинами. В последнее время за рубежом стали обессеривать и мазуты. Гидроочистку используют также для обессеривания и обессмоливания дистиллятов вторичного происхождения, расход водорода при этом резко увеличивается. Вместе с большим уменьшением содержания серы в продуктах очистки (гидрогенизатах) снижается, но меньше, содержание азотистых соединений и металлов. Поэтому гидроочистка наряду с другими процессами позволяет при переработке сернистых и высокосернистых нефтей получать высококачественные нефтепродукты. [c.194]


    В настоящее время для производства водорода используют сернистые нефтяные остатки, высвобождая при этом капитальные вложения в системы гидроочистки. На 1 т водорода расходуется 4,5 т мазута, гидроочистка которого потребовала бы 100 руб. удельных капитальных вложений. За вычетом этих капитальных вложений разница в удельных капитальных вложениях в производство водорода методом газификации будет не столь различна по сравнению-с методом паровой конверсии. [c.201]

    Комбинирование процессов было продолжено в системах 43-107 (вакуумная перегонка мазута, гидроочистка вакуумного дистиллята, каталитический крекинги газофракционирование) и КТ-1 (вакуумная перегонка мазута, гидроочистка вакуумного дистиллята, каталитический крекинг мощностью 2 млн т/год, висбрекинг гудрона, получение метил-трет-бутилового эфира — МТБЭ). Первая установка КТ-1 была пущена в 1994 г. на Омском НПЗ. [c.84]

    Наиболее простой вариант получения котельных топлив с пониженным содержанием серы - вакуумная перегонка мазута с получением газойля и гудрона. Вакуумный газойль подвергается гидроочистке и смешивается с гудроном. Этот вариант относительно прост и недорог. Однако он характеризуется ограниченными возможностями по снижению содержания серы, особенно при переработке высокосернистых нефтей. При переработке арланской нефти получается котельное топливо с содержанием серы 3,4%, товарной смеси западносибирских нефтей — 1,7%. Содержание серы соответственно в мазутах составляет 3,8 и 2,3%. Дальнейшее снижение содержания серы в котельном топливе невозможно без изменения соотношения смешиваемых компонентов. Отсюда очевидно, что необходимо уменьшение содержания серы непосредственно в мазуте или гудроне. При гидрообессеривании мазута и соответствующей стабилизации гидрогенизата может быть получено котельное Топливо с содержанием серы менее 1,0%, а в отдельных случаях и до 0,5%. [c.177]

    Система КТ-1 объединяет вакуумную перегонку мазута, гидроочистку, каталитический крекинг и ГФУ. [c.68]

    I.Вакуумная перегонка мазута, гидроочистке вакуумного газойли, каталитический крекинг вакуумного газойля,висбрекинг гудрона, [c.4]

    Промывку катализатора растворителем проводят по схеме гидроочистки с замкнутым циклом по потоку растворителя. За ходом промывки катализатора следят по количеству остатка после разгонки топлива. Отработанный растворитель можно сбрасывать в сырую ефть или мазут. Время, затрачиваемое на промывку, зависит от количества циркулирующего растворителя и составляет от 2 до 5 ч. После промывки катализатора растворителем необходимо в течение [c.129]

    Процесс каталитического крекинга комбинируется в составе этих установок с различными процессами, такими как вакуумная перегонка мазута, гидроочистка вакуумного газойля, сероочистка газов и др. Преимущества комбинирования процессов несомненны, и технический прогресс в нефтеперерабатывающей промышленности на перспективу будет связан наряду с укрупнением и автоматизацией процессов с созданием комбинированных установок. Однако необходимо отметить, что при сравнении технико-экономических показателей и оценке эффективности комбинированных установок, возникают значительные трудности. Разработанные проектными организациями установки каталитического крекинга различаются как по мощности, так и по составу комбинируемых процессов. Здесь сказывается различный подход проектных организаций в принятии технических решений в части размеров аппаратов, узлов и агрегатов, применения как типового, так и уникального оборудования, а также решений по составу комбинируемых процессов. Поэтому становится очень, сложным оценить эффективность собственно процесса каталитического крекинга в составе комбинированных установок. В настоящее время в отрасли нет разработанных методик или методических положений, позволяющих проводить сопоставление технико-экономических показателей как комбинированных, так и автономных уЪтановок. Технико-экономическое обоснование проекта комбинируемой установки производится, чаще всего, сравнением проекта комбинированной установки с комплексом отдельно стоящих установок, в результате выявляется, в основном, эффект комбинирования, а не эффективность разработанной системы каталитического крекинга. [c.16]

    Так как Azk>0, а Azs<0 (содержание серы убывает), оба члена этого уравнения являются отрицательными. Нами рассчитаны величины qn для различных вариантов гидроочистки — гидрокрекинга мазута и деасфальтированного гудрона. В исследованиях изменением режимных параметров удавалось регулиро- [c.152]

    Сообщается о разработке процесса облагораживания котельных топлив Н-011 В лабораторных условиях осуществлено деалкилирование метилнафталиновой фракции. Наряду с нафталином получено 6—15% продуктов деструкции нафталина Изучалась возможность гидрообессеривания сырой нефти (2,81% серы) с целью получения мазутов высокого качества. Обессеривание на 40—68% без заметного крекинга. Активность катализаторов сначала быстро падала, затем оставалась на уровне 30% Осуществлена гидроочистка сырого парафина из высокосернистых нефтей с температурой конца, кипения 480 °С и содержанием масла 5г0,8% расход водорода 0,15%. Срок службы катализатора без регенерации более 1000 ч Без сообщения условий гидрирования указывается, что при гидрогенизации пироконденсата (выход гидрогенизата 100%, расход водорода 0,64%) получается 47% бензола, 18 Х толурла, 10% ароматических углеводородов Се и 11% растворителя [c.65]


    Если учесть, что три четверти всего количества добываемой. нефти приходится на сернистые и высокосернистые нефти и что почти половина добываемой нефти используется как котельное топливо (особенно в Западной Европе и Японии), то становится ясным, что при добыче нефти более 2 млрд. т в год производственные мощности процессов гидроочистки и гидрокрекинга мазутов составят несколько сот млн. т в год. [c.13]

    Следует отметить, что для США, обладающих огромным автопарком, исторически характерно высокое потребление автомобильного бензина и других моторных топлив. Удельный вес остаточного котельного топлива относительно невелик (табл. П.1), причем около 50% потребностей в этом продукте удовлетворяется за счет импорта (основная статья импорта нефтепродуктов), главным образом из стран Карибского бассейна. В связи с этим для нефтепереработки США характерна высокая доля деструктивных процессов (каталитического крекинга, гидрокрекинга, коксования), позволяющих. получать из мазута более ценные продукты — моторное топливо и нефтехимическое сырье (табл. П.2), а также значительная доля процессов, обеспечивающих формирование качества товарных нефтепродуктов (риформинга, алкилирования, гидроочистки и др.). В целом доля вторичных процессов составляет 141% (табл. И.З), а глубина переработки нефти, оцениваемая по выходу моторных топлив и сырья для нефтехимии, превышает 75% (табл. П.4 и П.5). [c.26]

    Несмотря на то, что в составе сырья НПЗ Мексики свыше 30% приходится на тяжелую (плотность 0,9218) высокосернистую (содержание серы — 2,8% масс.) нефть месторождения Майя, для них характерна сравнительно глубокая переработка нефти выпуск мазута не превышает 33% на нефть (табл. IV. 5). Соответственно для нефтеперерабатывающей промышленности Мексики характерна сравнительно высокая насыщенность вторичными, в том числе деструктивными, процессами. Из числа последних на НПЗ Мексики представлены ККФ, гидрокрекинг и висбрекинг. За последние 10 лет мощности этих процессов возросли почти в три раза, а их удельный вес к 1 января 1985 г. достиг 31,4%. Почти в четыре раза увеличились мощности процессов гидроочистки и гидрообессеривания, составившие 23,1 млн. т, или 37% (табл. .6, IV.7). В ближайшие годы предполагается дальнейший рост мощностей вторичных процессов, обусловленный необходимостью увС личения глубины переработки нефти (каталитический крекинг, висбрекинг) и повышения качества продукции (гидроочистка, риформинг). [c.99]

    Регулирование заданной температуры на входе в реакторы осуществляется автоматически путем изменения подачи отопительного газа или мазута к форсункам соответствующих секций реакторной печи риформинга и к форсункам печи гидроочистки. [c.202]

    Сопоставление капитальных вложений и зксплутационных расходов этих вариантов показывает также преимущества варианта комбинирования гидроочистки вакуумного газойля с гидрообессериванием гудрона по сравнению с прямым гидрообессериванием мазута. [c.154]

    Затраты на получение моторных топлив при комплексной переработке нефти определены исходя из комбинированных схем ЛК 6, включающей атмосферную перегонку нефти, каталитический риформинг бензина, гидроо.чистку среднедистиллятных топлив и газофракционирование, и КТ-4, в составе которой вакуумная перегонка мазута, гидроочистка вакуумного газойля, каталитический крекинг с газофракционированием и висбрекинг гудрона. Выход моторных топлив при такой схеме переработки может достигать 65% на нефть. [c.206]

    Вакуумная перегонка мазута, гидроочистка вакуумното газойля,каталитический к рвкинг гидроочищенного вакуумного газой-м, производство битума. [c.4]

    В дальнейшем на базе установки этой системы Грозгипронефтехим выпустил проект, комбинирующий следующие процессы вакуумная перегонка мазута-гидроочистка вакуумного дистиллята-каталитический крекинг типа 43-107 висбрекинг гудрона-производство МТБЭ. Эта система имеет обозначение КТ-1. Такие системы построены на Павлодарском НПЗ (1983 г.), Мажейкском НПЗ (1985 г.), Омском НПЗ (1994 г.). [c.158]

    Из испарителя высокого давления снизу уходит бензиновая фракция (рис. 1П-7, а) или сумма светлых нефтепродуктов (рнс. 111-7,6) в последнем случае для четкого отделения светлых фракций от мазута предусматривается еще колонна вторичной перегонки. Очевидно, схема а предназначена для перегонки малосернистых нефтей, а схема б —для перегонки средне- и вьгсокосерни-стых нефтей. Комбинирование процессов первичной перегонки нефти и гидроочистки топливных фракций в одной технологической установке позволяет снизить эксплуатационные затраты на величину, необходимую для повторного нагрева топливных фракций в процессе их гидроочистки. [c.159]

    В последние годы в мировой нефтепереработке наблюдается тенд<-нция к непрерывному утяжелению сырья. На современных зарубежных установках перешли к переработке глубоковакуумных газойлей с температурой конца кипения 540 — 620 °С. На специально запроектированных установках каталитическому крекингу под— вергс1ют остаточное сырье мазуты и даже гудроны, или их смеси с дистиллятным сырьем без или после предварительного облагораживания гидроочисткой, деасфальтизацией или деметализацией. [c.103]

    Экспериментальные исследования процессов дня прямого гидрообес-серивания мазутов показали большую зависимость их эффективности от компонентного состава и физико-химических свойств остаточного сырья. Анализ имеющихся данных об уровне развития этих процессов для облагораживания нефтяных остатков по мере утяжеления перераба-тьшаемого сырья показали, что для них характерно более резкое ухудшение основных показателей, чем наблюдались при развитии процессов гидроочистки нефтяных дистиллятов при утяжелении их сырья от бензина до вакуумного газойля. Как для гидроочистки дистиллятов, так и для гидрообессеривания нефтяных остатков главные показатели, определяющие эффективность и экономичность процессов — расход водорода и катализатора, давления в реакторах, производительность ехшницы реакционного объема (рис. 1.1). [c.9]

    На установках для гидроочистки дистиллятов в цилиндрических вертикальных реакторах с неподвижными слоями катализатора широко применяют алюмокобальтмолибденовые либо алюмони-кельмолибденовые катализаторы. При сопоставлении катализаторов установлено, что А1—Со—Мо катализаторы более эффективны в отношении удаления серы, а А1—N1—Мо катализаторы —в отношении удаления азота и насыщения ароматических соединений и олефинов [17, 18]. Известны гидрообессеривающие катализаторы с повышенной активностью в отношении уда.пения азота из керосиновых дистиллятов, атмосферных и вакуумных газойлей, а также мазутов. Так, фирма Ргоса1аИзе (Франция) выпускает три сорта катализатора такого типа на носителе А12О3 [19]  [c.54]

    Фирмой Esso Resear h предлагается три варианта получения малосернистого котельного топлива 1) вакуумная перегонка, гидроочистка дистиллята и смешение гидроочищенного продукта с вакуумным остатком (содержание остаточной серы 1—2%) 2) то же - -+ деасфальтизация и добавка деасфальтизата к дистилляту для обессеривания (содержание остаточной серы 0,5—1,0%) 3) прямая гидроочистка мазута до содержания серы 0,3—1,8% на новых металлоустойчивых катализаторах со сроком службы до 2 месяцев [c.79]

    Не менее важен процесс гидроочистки, предназначенный для улучшения качества углеводородного сырья. Ей подвергают бензины, лигроины, топлива для реактивных двигателей, дизельное топливо, масла, мазуты, угольные смолы, продукты, получаемые из горючих сланцев и т. д. Обработка водородом в присутствии катализаторов освобождает сырье от связанной серы, азота и кислорода, а также ведет к гидрированию ненасыщенных углеводородов и ароматических колец. Процесс проводят при 300—400°С, 3—4 МПа и 10-кратном избытке водорода. После гидроочистки как правило изменяются запах и цвет продуктов, уменьшается количество выделяющихся смолистых веществ, улучшаются топливные характеристики, повышается стойкость при хранв НИИ. Особенно важно удалить из топлива серу, чтобы предотвратить отравление воздуха диоксидом серы, который образуется при сгорании топлива. [c.90]

    Видно, что для различных серосодержащих соединений теплота гидрогенолиза С—5-связей слабо меняется с температурой. Если бы концентрация соединений серы при гидроочистке была значительной, необходимо было бы учитывать вклад в общую теплоту процесса реакций гидрогенолиза С—5-связей. Однако при производстве моторных топлив концентрация соединений серы мала (обычно менее 0,5%) и даже при полном гидрогенолизе всех С—5-связей выделяемое тепло составит менее 0,5 кДж/моль обрабатываемой нефтяной фракции. Естественно, такое тепловыделе-ление не скажется на тепловом и кинетическом режиме процесса и его можно не учитывать. Учет теплоты гидрогенолиза связей С—5 необходим для гидроочистки котельного топлива, получаемого из мазутов сернистых нефтей. В этом случае концентрация соединений серы является высокой, и их превращения следует учитывать при тепловых расчетах. , "— [c.121]

    В самом деле, уже сейчас в мире ежегодно добывается и перерабатывается более 2 млрд. т нефти и получаются сотни миллионов тонн угольных и сланцевых смол. Их чистка от сернистых, азотистых, металлосодержащих соединений и других примесей, превращение в высококачественные моторные, реактивные и котельные топлива, а также полупродукты для химической переработки невозможны без процессов гидрогенизации. Процессы гидроочистки, гидрокрекинга, гидрирования и другие процессы, осуществляемые под давлением водорода, в настоящее время определяют технический уровень нефтеперерабатывающей и нефтехимической промышленности. Уже строятся и проектируются заводы, в которых вся сырая нефть или все ее погоны так или иначе облагораживаются при помощи процессов гидрогенизации. С развитием методов гидродесуль-фуризации тяжелых нефтяных продуктов — вакуумных дистиллятов, деасфальтизатов и мазутов — уже в ближайшее десятилетие суммарная мощность гидрогенизационных процессов и процессов риформинга и изомеризации, также осуществляемых под давлением водорода, приблизится к миллиарду тонн в год. [c.5]

    Сопоставлены результаты гидрокрекинга различного сырья на стационарном и движущемся катализаторах. Первые более эффективны но удалению серы, азота и кислорода при низких объемных скоростях, вторые — при более высоких. По выходу нафты катализаторы различаются только при низких объемных скоростях Описано модифицирование носителя кобальтмолибде-нового катализатора для гидроочистки мазутов (см.з ) добавками 1,5—3,1%- металлов второй группы. Окиси Be, Mg, Са, Sr, Zn и d увеличивают объем микропор и активность катализатора, а окись Ва — уменьшает Изучалось прямое обессеривание тяжелых масел и сырых нефтей на катализаторе повышенной активности в системе с движущимся слоем катализатора. Активность катализатора повышается с увеличением содержания СоО и М0О3. Из остатка с 4,26% серы получен продукт, содержащий 0,9% серы [c.87]

    Рекламируется процесс гидроочистки мазутов Gulf-HDS. В промышленных условиях содержание серы снижено с 4 до 0,87% [c.87]

    Из атмосферной колонны 5 через отпарные колонны 6 одновременно отбирают три боковых погона фракцию 140—250 °С и два компонента дизельного топлива — фракцию 250—320 °С и фракцию 320—380 °С. Соотношение компонентов дизельного топлива подобрано так, чтобы балансовая смесь фракции 250— 320 Х с фракцией 320—380 °С, прошедшей гидроочистку, при перегонке по методу А5ТМ 086 выкипала до 360 С на 90% (по объему) и содержала до 1% серы (требования стандарта). Остатком атмосферной колонны является мазут. В низ атмосферной колонны и отпарных колонн 6 подается перегретый водяной пар. [c.74]

    Основными направлениями промышленного использования насадок ПЕТОН является их применение в процессах глубоковакуумной перегонки мазута атмосферной перегонки нефти разделения нефтяных фракций гидроочистки подготовки пирогаза  [c.25]


Смотреть страницы где упоминается термин Мазуты гидроочистка: [c.58]    [c.226]    [c.23]    [c.4]    [c.392]    [c.272]    [c.15]    [c.93]    [c.254]    [c.154]    [c.151]    [c.77]    [c.291]    [c.152]    [c.154]    [c.23]    [c.289]   
Технология переработки нефти и газа Часть 3 (1967) -- [ c.264 ]




ПОИСК





Смотрите так же термины и статьи:

Мазут



© 2024 chem21.info Реклама на сайте