Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбция окиси этилена

    Кинетика окисления этилена на серебряном катализаторе исследовалась в изотермическом режиме (при 218 °С) в безгра-диентном реакторе в широком интервале концентраций этилена, кислорода, окиси этилена, воды и двуокиси углеро-дд87, 88, 08, 110, 111 j pjj выводе кинетических уравнений было учтено стационарное течение процесса, использованы представления теории адсорбции Лангмюра и сделано несколько предположений относительно механизма процесса, близкого к иредлол< ен-ному ранее . Считается, что адсорбированный молекулярный кислород быстро распадается иа атомы, покрывающие большую часть поверхности катализатора. Затем атомарный кислород взаимодействует с этиленом, образуя одновременно окись этилена, двуокись углерода и воду. Эти продукты адсорбируются на поверхности катализатора и уменьшают каталитический эффект серебра. [c.285]


    Изменения работы выхода электрона ф при адсорбции этих веществ на серебре, но данным опытов Еникеева [66], показали, что этилен и окись этнлена являются донорами электронов при адсорбции, а кислород и СОг — акцепторами. Вода незначительно уменьшает ср. На поверхности Ag протекают следующие реакции  [c.110]

    Каталитическое окисление этилена на серебряном катализаторе служит примером реакции, при которой кислород непосредственно присоединяется к ненасыщенному углеводороду. Марголис [30] показала, что, хотя при температурах около 200° на чистой поверхности серебра этилен почти не адсорбируется, на серебряной поверхности, предварительно адсорбировавшей кислород, адсорбция этого углеводорода происходит быстро. Результаты калориметрических исследований Стоуна [1, 31] подтвердили, что кислород, предварительно адсорбированный на новерхности закиси кобальта, увеличивает адсорбцию этилена. Последовательный напуск порций этилена на обезгаженную и обработанную кислородом поверхность закиси кобальта показал, что теплота сорбции этилена снижается от 80 до 18 ккал-молъ по мере постепенного увеличения степени заполнения кислородом поверхности катализатора. Наблюдения за изменением теплот адсорбции выявили три характерные стадии парциального окисления этилена а) образование окиси этилена, б) образование ацетальдегида и в) образование формальдегида. Теплоты адсорбции, соответствующие образованию этих веществ в адсорбированном состоянии, соответственно равны 15, 40 и 100ккал-моль . Таким образом, на начальных стадиях взаимодействия этилена с предварительно адсорбированным кислородом одна молекула этилена, по-видимому, реагирует с двумя атомами адсорбированного кислорода в результате этой реакции образуется формальдегид. На более поздних стадиях одна молекула этилена взаимодействует с одним атомом адсорбированного кислорода, при этом образуются окись этилена и ацетальдегид. Эти результаты в значительной степени согласуются с более ранними выводами Твига [32, 33], который исследовал кинетику окисления этилена на серебряном катализа- [c.325]

    При адсорбции смеси углекислого газа и водорода на древесном угле с повышением содержания СОг в газе время, необходимое для достижения равновесия, уменьшается, а количество газа, требуемое для насыщения поверхности адсорбента, возрастает [1]. Это явление объясняют высокой адсорбционной способностью углекислого газа. Водород адсорбируется слабее, чем углекислый газ, и теплота его адсорбции мала. Аналогичные результаты были получены при адсорбции смеси углекислого газа и окиси углерода. В этом случае насыщение газом поверхности адсорбента происходит быстрее, чем при адсорбции смеси углекислого газа и водорода. Адсорбция смеси этилен — углекислый газ увеличивается с возрастанием содержания СОг в смеси значительно быстрее, чем в предыдущих случаях, однако относительное содержание углекислого газа в газовой фазе увеличивается, а его содержание на поверхности адсорбента падает. Этилен адсорбируется значительно легче. Поэтому вид изотерм адсорбции существенно зависит от того, адсорбируется ли один углекислый газ или его смесь с этиленом. Адсорбция окиси углерода аналогична адсорбции смеси углекислый газ — этилен. Сравнение адсорбции смеси углекислый газ — окись углерода с адсорбцией одной окиси углерода показывает, что количество легко адсорбирующегося газа на поверхности резко уменьшается в присутствии более трудно адсорбируемого вещества. При низких давлениях этилен адсорбируется сильнее, чем углекислый газ при высоких давлениях наблюдается обратная картина. Лоренц объяснил это явление, в соответствии с теорией Лэнгмюра, тем, что при низких давлениях непредельные углеводороды адсорбируются по вторичным связям, в то время как при высоких давлениях все валентности насыщены. [c.141]


    Селективность адсорбции, требуемая при определении удельной поверхности металла в многокомпонентных (например, нанесенных) металлических катализаторах, достигается при условии, что газ в основном хемосорбируется на поверхности металла, а адсорбция на поверхности неметаллического компонента относительно мала (в идеальном случае равна нулю). Если катализатор состоит только из металла, вопрос о дифференциации компонентов, естественно, не возникает и удельную поверхность металла, равную общей удельной поверхности образца, можно измерить методом физической адсорбции или хемосорбции. Однако каждому методу присущи свои особенности. Если используется хемосорбция, должен быть хорощо известен химический состав поверхности, с тем чтобы можно было говорить об определенной стехиометрии адсорбции. В то же время, если удельная поверхность невелика, неточность из-за поправки на мертвый объем при хемосорбцин меньше, так как значительно ниже давление газа. Наиболее широко исследована хемосорбция водорода, окиси углерода и кислорода, иногда применяются и другие вещества, например окись азота, этилен, бензол, сероуглерод, тиофен, тиофенол. [c.300]

    В процессе восстановления окиснохромовых катализаторов окисью углерода, этиленом или водородом в жестких условиях (450—500°С) происходит образование координационно-ненасыщенного двухвалентного хрома. Он адсорбирует окись углерода с теплотой адсорбции, падающей по мере заполнения с 116 до 54 кДж/моль. При —195 °С двухвалентный хром на силикагеле или на алюмосиликате дает сигнал ЭПР с -фактором 4. Под действием кислорода двухвалентный хром легко окисляется в трех-(ж 70%) и шестивалентное состояние ( 30%). [c.23]

    На рис. 60—63 приведены изотермы адсорбции для важнейших компонентов коксового газа [3—6]. Изотермы показывают, что способность адсорбироваться у различных компонентов коксового газа в чистом состоя Нии уменьшается в следующем порядке пропилен, этан, этилен, углекислота, метая, окись углерода, водород. [c.238]

    Таким образом, при непрерывном процессе адсорбции этилена из коксового газа можно получить концентрированную этиленовую фракцию, содержащую 99% углеводородов Сг (этилен + этан) и около 0,4% углеводородов Сз. Этана в смеси углеводородов Сг содержится около 30%. Если осуществить пиролиз этана, то это позволит увеличить выход этилена и все углеводороды группы Сг, содержащиеся в этиленовой фракции, смогут быть использованы для получения ряда продуктов органического синтеза (этилбензол, окись этилена, этанол, полиэтилен и др.). [c.278]

    Согласно самым ранним исследованиям, проведенным с не очень чистыми металлическими поверхностями, хемосорбция протекает медленно и продолжается с постепенно уменьшающейся скоростью в течение многих дней. Таким образом, нельзя быть полностью уверенным в том, что в системе установилось окончательное равновесие. Обычно количество адсорбированного вещества определяют на той стадии процесса, при которой скорость поглощения газа становится очень малой. Как уже указывалось в предыдущем разделе, на чистых металлических поверхностях хемосорбция заканчивается полностью в определенный момент времени. Однако даже в этих случаях очень важно убедиться в том, что достигнуто истинное равновесие и не имеют места явления адсорбционного гистерезиса или разложения адсорбата. Известно, что аммиак, окись углерода и этилен в определенном ин-. тервале температур и давлений после начальной быстрой адсорбции подвергаются каталитическому разложению на металлических поверхностях. [c.324]

    В Германии этиленхлоргидрин получали непрерывным методом, пропуская в воду одновременно хлор и избыток этилена [34]. Процесс проводили в колоннах, выложенных внутри керамиковыми плитами и затем гуммированных. Не вступивший в реакцию этилен возвращали обратно в процесс, предварительно отмыв от него хлористый водород раствором едкого натра и удалив пары хлорированных углеводородов адсорбцией активированным углем. Выделяющегося при реакции тепла оказалось достаточно, чтобы нагревать до 45° продукты реакции, вытекающие из колонны. Был подобран такой режим процесса, чтобы получить 4—5%-ный раствор хлоргидрина, который без предварительных концентрирования и очистки перерабатывали непосредственно в окись этилена (стр. 188). По сравнению с периодическим методом при проведении непрерывного процесса приходится работать с меньшей степенью превращения, чтобы выдержать на том же уровне количество побочно образующегося дихлорэтана. [c.185]

    Наблюдаемый компенсационный эффект может быть приписан скорее изменению неоднородности поверхности окиси цинка, чем изменению положения уровня Ферми. В самом деле, маловероятно, что в этой температурной области этилен и водород адсорбируются по ионному типу [8], если только электроны, отданные адсорбатом, не захватываются твердым телом [10, 14]. Кроме того, известно, что стехиометрическая окись цинка, на которой протекает адсорбция ионного типа [8], либо совсем неактивна, либо имеет очень малую активность [4, 15]. [c.117]


    Углокислый газ обратимо адсорбируется только на поверхности, покрытой кислородом, и, вероятно, образует комплекс (СС д) . При температурах около 2G0—250° окись этилена частично разлагается на иоверхностн серебра, как показал Твигг [21 ], на этилен и адсорбированный кислород. Измерения контактной разности потенциалов нри адсорбции окиси этилена при этих температурах показали, что [c.110]

    В общем случае начальные теплоты адсорбции на различных металлах располагаются в определенном порядке независимо от прир-оды адсорбата (по, К р-айней мере это справедливо для таких обычных ад-сор-батов, как водор од, азот, аммиак, окись углерода, этилен и ацетилен), убывая в следующей последовательности Та>- >Сг>-Ее>Ы1> >НЬ>Си>Аи (рис. ХУ- ) [11]. Поэтому можно предположить, что, во-первых, при хемосорбции наибольшей активностью отличаются иере- [c.524]

    Адсорбцию одного газа можно уменьшить добавлением другого, более сильно адсорбируемого газа. Однако каталитическая активность часто снижается в гораздо большей степени, чем адсорбция. В реакции водорода с этиленом катализируемой тонкодиспергированной медью, следы ртути понижают скорость реакции в 200 раз, тогда как адсорбция этилена снижается при этом на 14%, а адсорбция водорода на 80% [224]. Поэтому предполагают, что имеете два вида адсорбционных участков один, на котором яд (ртуть) адсорбируется с вытеснением водорода, и второй, на котором адсорбируется этилен. Главные центры каталитической реакции при этом занимаются ртутью. Гриффин [114] получил изотермы для адсорбции водорода на тонкодиспергированной меди при 0° в присутствии окиси зтлерода и циана, а также отдельно изотермы для этих газов (фиг. 36). Циан очень сильно адсорбируется и ведет себя как ртуть он уменьшает адсорбцию при всех давлениях. Окись углерода, напротив, вызывает небольшое повышение адсорбции при, низких давлениях. [c.399]

    I — этилен хемосорбирован ка Аб", нанесенном на аэросил, при 95 С после предварительной адсорбции Оз при 95 С 2 — то же при 200 С 3 — то же при ЗОО " С 4 газообразный этилен 5 — газообразная окись этилена в — окись этилена хемосорбиро-вана при 95 С на Pig, нанесенном на аэросил 7 — Ag , нанесенное на аэросил [c.82]

    В процессе эксперимента по адсорбции был получен спектр газовой фазы и для системы этилен — окись никеля наблюдалось образование димера — пгракс-бутепа-2. Хотя этилеп пе претерпевал реакции на пористом стекле викор, впоследствии Литтл, Клаузер и Амберг (1961) нашли, что к-бутены полимеризуются, [c.180]

    Когда этилен напускают на окись алюминия, на иоверхности образуются только насыщенные соединения (Луккези, Картер и Иейтс, 1962). Этот результат противоположен данным, полученным при адсорбции ацетилена на окиси алюминия и указывающим на то, что в поверхностных соединениях сохранялась нена-сыщенность адсорбированной молекулы. Обмен между дейтерированной поверхностью окиси алюминия (содержащей ОВ-грунпы) и адсорбированным этиленом не наблюдался. В этом отношении адсорбция этилена также отличается от адсорбции ацетилена, рассмотренной в предыдущих разделах. Однако адсорбция этилена на окиси алюминия показала, что молекулы связаны с поверхностными гидроксильными или де11тероксильпыми группадп водородными связями. Высокочастотная полоса при 3785 свободных гидроксильных групп уменьшает свою интенсивность при адсорбции, а при более низких частотах появляется широкая полоса поглощения, указывающая на образование водородной связи. На другие поверхностные гидроксильные группы, слабо взаимодействующие друг с другом и дающие полосы поглощения при 3740 и 3710 см , адсорбция этилена влияет в меньшей степени. [c.194]

    Кроме воды во многих промышленных газах содержатся в качестве примесей такие нежелательные вещества, как двуок . и окись углерода, сероводород и др. Выбором типа цеолита и со ответствующих условий процесса можно удалить из газового по тока одновременно в одном адсорбере примеси вместе с водой. Этот процесс получил название соадсорбции и широко используется в промышленности. Он легко осуществим на синтетических цеол i-тах. Так, им пользуются [5941 для осушки и очистки этилена, идущего на полимеризацию в полиэтилен. Одноступенчатая адсорбция в неподвижном слое гранулированного цеолита СаА позволяет уменьшить содержание углекислоты в этилене от 3 до 0,0001 % при одно- [c.175]


Смотреть страницы где упоминается термин Адсорбция окиси этилена: [c.300]    [c.115]    [c.208]    [c.212]    [c.89]    [c.196]    [c.102]    [c.343]    [c.192]    [c.25]    [c.131]    [c.376]    [c.160]   
Катализ в промышленности Том 1 (1986) -- [ c.226 , c.228 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция окиси углерода, этилена и предельных углеводородов

Адсорбция этилена

Никель адсорбция сернистых при восстановлении окиси этилена

Этилен окись



© 2025 chem21.info Реклама на сайте